Model for the water-amorphous silica interface: The undissociated surface

被引:124
作者
Hassanali, Ali A.
Singer, Sherwin J. [1 ]
机构
[1] Ohio State Univ, Biophys Program, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA
关键词
D O I
10.1021/jp062971s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The physical and chemical properties of the amorphous silica-water interface are of crucial importance for a fundamental understanding of electrochemical and electrokinetic phenomena, and for various applications including chromatography, sensors, metal ion extraction, and the construction of micro- and nanoscale devices. A model for the undissociated amorphous silica-water interface reported here is a step toward a practical microscopic model of this important system. We have extended the popular BKS and SPC/E models for bulk silica and water to describe the hydrated, hydroxylated amorphous silica surface. The parameters of our model were determined using ab initio quantum chemical studies on small fragments. Our model will be useful in empirical potential studies, and as a starting point for ab initio molecular dynamics calculations. At this stage, we present a model for the undissociated surface. Our calculated value for the heat of immersion, 0.3 J center dot m(-2), falls within the range of reported experimental values of 0.2-0.8 J center dot m(-2). We also study the perturbation of water properties near the silica-water interface. The disordered surface is characterized by regions that are hydrophilic and hydrophobic, depending on the statistical variations in silanol group density.
引用
收藏
页码:11181 / 11193
页数:13
相关论文
共 101 条
[1]   On the computer simulation of a hydrophobic vitreous silica surface [J].
Bakaev, VA ;
Steele, WA .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (21) :9803-9812
[2]   Reactions and diffusion of water and oxygen molecules in amorphous SiO2 -: art. no. 055508 [J].
Bakos, T ;
Rashkeev, SN ;
Pantelides, ST .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4
[3]  
BARTLETT RJ, 1974, INT J QUANTUM CHEM, P271
[4]  
BARTLETT RJ, 1975, INT J QUANTUM CHEM, P183
[5]   Structural properties of molten silicates from ab initio molecular-dynamics simulations:: Comparison between CaO-Al2O3-SiO2 and SiO2 -: art. no. 224205 [J].
Benoit, M ;
Ispas, S ;
Tuckerman, ME .
PHYSICAL REVIEW B, 2001, 64 (22)
[6]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[7]   MOLLER-PLESSET THEORY FOR ATOMIC GROUND-STATE ENERGIES [J].
BINKLEY, JS ;
POPLE, JA .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1975, 9 (02) :229-236
[8]   Surface heterogeneity on hydrophilic and hydrophobic silicas: Water and alcohols as probes for H-bonding and dispersion forces [J].
Bolis, V ;
Cavenago, A ;
Fubini, B .
LANGMUIR, 1997, 13 (05) :895-902
[9]   Two-membered silicon rings on the dehydroxylated surface of silica [J].
Ceresoli, D ;
Bernasconi, M ;
Iarlori, S ;
Parrinello, M ;
Tosatti, E .
PHYSICAL REVIEW LETTERS, 2000, 84 (17) :3887-3890
[10]  
CHABAL YJ, 2001, FUNDAMENTAL ASPECTS