Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release

被引:360
作者
Jana, NR [1 ]
Zemskov, EA [1 ]
Wang, GH [1 ]
Nukina, N [1 ]
机构
[1] RIKEN, Brain Sci Inst, Lab CAG Repeat Dis, Wako, Saitama 3510198, Japan
关键词
D O I
10.1093/hmg/10.10.1049
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Expansion of CAG repeats within the coding region of target genes is the cause of several autosomal dominant neurodegenerative diseases including Huntington's disease (HD), A hallmark of HD is the proteolytic production of N-terminal fragments of huntingtin containing polyglutamine repeats that form ubiquitinated aggregates in the nucleus and cytoplasm of the affected neurons. In this study, we used an ecdysone-inducible stable mouse neuro2a cell line that expresses truncated N-terminal huntingtin (tNhtt) with different polyglutamine length, along with mice transgenic for HD exon 1, to demonstrate that the ubiquitin-proteasome pathway is involved in the pathogenesis of HD, Proteasomal 20S core catalytic component was redistributed to the polyglutamine aggregates in both the cellular and transgenic mouse models. Proteasome inhibitor dramatically increased the rate of aggregate formation caused by tNhtt protein with 60 glutamine (60Q) repeats, but had very little influence on aggregate formation by tNhtt protein with 150Q repeats. Both normal and polyglutamine-expanded tNhtt proteins were degraded by proteasome, but the rate of degradation was inversely proportional to the repeat length. The shift of the proteasomal components from the total cellular environment to the aggregates, as well as the comparatively slower degradation of tNhtt with longer polyglutamine, decreased the proteasome's availability for degrading other key target proteins, such as p53, This altered proteasomal function was associated with disrupted mitochondrial membrane potential, released cytochrome c from mitochondria into the cytosol and activated caspase-9- and caspase-9-like proteases These results suggest that the impaired proteasomal funaction plays an important role in polyglutamine protein-induced cell death.
引用
收藏
页码:1049 / 1059
页数:11
相关论文
共 65 条
  • [1] Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: Correlation between the density of inclusions and IT15 CAG triplet repeat length
    Becher, MW
    Kotzuk, JA
    Sharp, AH
    Davies, SW
    Bates, GP
    Price, DL
    Ross, CA
    [J]. NEUROBIOLOGY OF DISEASE, 1998, 4 (06) : 387 - 397
  • [2] Bercovich B, 1997, J BIOL CHEM, V272, P9002
  • [3] Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin
    Boutell, JM
    Thomas, P
    Neal, JW
    Weston, VJ
    Duce, J
    Harper, PS
    Jones, AL
    [J]. HUMAN MOLECULAR GENETICS, 1999, 8 (09) : 1647 - 1655
  • [4] Bush KT, 1997, J BIOL CHEM, V272, P9086
  • [5] Evidence for proteasome involvement in polyglutamine disease:: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro
    Chai, YH
    Koppenhafer, SL
    Shoesmith, SJ
    Perez, MK
    Paulson, HL
    [J]. HUMAN MOLECULAR GENETICS, 1999, 8 (04) : 673 - 682
  • [6] Chai YH, 1999, J NEUROSCI, V19, P10338
  • [7] Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease
    Chen, M
    Ona, VO
    Li, MW
    Ferrante, RJ
    Fink, KB
    Zhu, S
    Bian, J
    Guo, L
    Farrell, LA
    Hersch, SM
    Hobbs, W
    Vonsattel, JP
    Cha, JHJ
    Friedlander, RM
    [J]. NATURE MEDICINE, 2000, 6 (07) : 797 - +
  • [8] The ubiquitin-proteasome pathway: on protein death and cell life
    Ciechanover, A
    [J]. EMBO JOURNAL, 1998, 17 (24) : 7151 - 7160
  • [9] Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice
    Cummings, CJ
    Reinstein, E
    Sun, YL
    Antalffy, B
    Jiang, YH
    Ciechanover, A
    Orr, HT
    Beaudet, AL
    Zoghbi, HY
    [J]. NEURON, 1999, 24 (04) : 879 - 892
  • [10] Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1
    Cummings, CJ
    Mancini, MA
    Antalffy, B
    DeFranco, DB
    Orr, HT
    Zoghbi, HY
    [J]. NATURE GENETICS, 1998, 19 (02) : 148 - 154