Plantacyanin plays a role in reproduction in Arabidopsis

被引:147
作者
Dong, J [1 ]
Kim, ST [1 ]
Lord, EM [1 ]
机构
[1] Univ Calif Riverside, Ctr Plant Cell Biol, Dept Bot & Plant Sci, Riverside, CA 92521 USA
关键词
D O I
10.1104/pp.105.063388
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plantacyanins belong to the phytocyanin family of blue copper proteins. In the Arabidopsis ( Arabidopsis thaliana) genome, only one gene encodes plantacyanin. The T- DNA- tagged mutant is a knockdown mutant that shows no visible phenotype. We used both promoter- beta- glucuronidase transgenic plants and immunolocalization to show that Arabidopsis plantacyanin is expressed most highly in the inflorescence and, specifically, in the transmitting tract of the pistil. Protein levels show a steep gradient in expression from the stigma into the style and ovary. Overexpression plants were generated using cauliflower mosaic virus 35S, and protein levels in the pistil were examined as well as the pollination process. Seed set in these plants is highly reduced mainly due to a lack of anther dehiscence, which is caused by degeneration of the endothecium. Callose deposits occur on the pollen walls in plants that overexpress plantacyanin, and a small percentage of these pollen grains germinate in the closed anthers. When wild- type pollen was used on the overexpression stigma, seed set was still decreased compared to the control pollinations. We detected an increase in plantacyanin levels in the overexpression pistil, including the transmitting tract. Guidance of the wild- type pollen tube on the overexpression stigma is disrupted as evidenced by the growth behavior of pollen tubes after they penetrate the papillar cell. Normally, pollen tubes travel down the papilla cell and into the style. Wildtype pollen tubes on the overexpression stigma made numerous turns around the papilla cell before growing toward the style. In some rare cases, pollen tubes circled up the papilla cell away from the style and were arrested there. We propose that when plantacyanin levels in the stigma are increased, pollen tube guidance into the style is disrupted.
引用
收藏
页码:778 / 789
页数:12
相关论文
共 56 条
[1]   STUDIES ON PLANTACYANIN .1. DISTRIBUTION IN THE PLANT KINGDOM, SUBCELLULAR-LOCALIZATION AND PHYSICOCHEMICAL PROPERTIES [J].
AIKAZYAN, VT ;
NALBANDYAN, RM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1981, 667 (02) :421-432
[2]   Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues [J].
An, YQ ;
McDowell, JM ;
Huang, SR ;
McKinney, EC ;
Chambliss, S ;
Meagher, RB .
PLANT JOURNAL, 1996, 10 (01) :107-121
[3]   CRYPTIC SELF-FERTILIZATION IN THE MALPIGHIACEAE [J].
ANDERSON, WR .
SCIENCE, 1980, 207 (4433) :892-893
[4]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[5]   Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome [J].
Becker, JD ;
Boavida, LC ;
Carneiro, J ;
Haury, M ;
Feijó, JA .
PLANT PHYSIOLOGY, 2003, 133 (02) :713-725
[6]   MOLECULAR INSIGHTS INTO EUKARYOTIC CHEMOTAXIS [J].
CATERINA, MJ ;
DEVREOTES, PN .
FASEB JOURNAL, 1991, 5 (15) :3078-3085
[7]   A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J].
Chen, XM .
SCIENCE, 2004, 303 (5666) :2022-2025
[8]   A FLORAL TRANSMITTING TISSUE-SPECIFIC GLYCOPROTEIN ATTRACTS POLLEN TUBES AND STIMULATES THEIR GROWTH [J].
CHEUNG, AY ;
WANG, H ;
WU, HM .
CELL, 1995, 82 (03) :383-393
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   Stylar glycoproteins bind to S-RNase in vitro [J].
Cruz-Garcia, F ;
Hancock, CN ;
Kim, D ;
McClure, B .
PLANT JOURNAL, 2005, 42 (03) :295-304