Gene expression profiling identifies molecular subtypes of gliomas

被引:222
作者
Shai, R
Shi, T
Kremen, TJ
Horvath, S
Liau, LM
Cloughesy, TF
Mischel, PS [1 ]
Nelson, SF
机构
[1] Univ Calif Los Angeles, Dept Pathol & Lab Med, Henry E Singleton Brain Tumor Program, Sch Med, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Human Genet, Henry E Singleton Brain Tumor Program, Sch Med, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Biostat, Henry E Singleton Brain Tumor Program, Sch Med, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Neurosurg, Henry E Singleton Brain Tumor Program, Sch Med, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Neurol, Henry E Singleton Brain Tumor Program, Sch Med, Los Angeles, CA 90095 USA
关键词
glioblastoma; gene expression profiling; microarray; glioma;
D O I
10.1038/sj.onc.1206753
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification of distinct molecular subtypes is a critical challenge for cancer biology. In this study, we used Affymetrix high-density oligonucleotide arrays to identify the global gene expression signatures associated with gliomas of different types and grades. Here, we show that the global transcriptional profiles of gliomas of different types and grades are distinct from each other and from the normal brain. To determine whether our data could be used to uncover molecular subtypes without prior knowledge of pathologic type and grade, we performed K-means clustering analysis and found evidence for three clusters with the aid of multidimensional scaling plots. These clusters corresponded to glioblastomas, lower grade astrocytomas and oligodendrogliomas (P<0.00001). A predictor constructed from the 170 genes that are most differentially expressed between the subsets correctly identified the type and grade of all samples, indicating that a relatively small number of genes can be used to distinguish between these molecular subtypes. These results further define molecular subsets of gliomas which may potentially be used for patient stratification, and suggest potential targets for treatment.
引用
收藏
页码:4918 / 4923
页数:6
相关论文
共 37 条
[1]   Towards a novel classification of human malignancies based on gene expression patterns [J].
Alizadeh, AA ;
Ross, DT ;
Perou, CM ;
van de Rijn, M .
JOURNAL OF PATHOLOGY, 2001, 195 (01) :41-52
[2]   Expression analysis of δ-catenin and prostate-specific membrane antigen:: Their potential as diagnostic markers for prostate cancer [J].
Burger, MJ ;
Tebay, MA ;
Keith, PA ;
Samaratunga, HM ;
Clements, J ;
Lavin, MF ;
Gardiner, RA .
INTERNATIONAL JOURNAL OF CANCER, 2002, 100 (02) :228-237
[3]   Sam68 enhances the cytoplasmic utilization of intron-containing RNA and is functionally regulated by the nuclear kinase Sik/BRK [J].
Coyle, JH ;
Guzik, BW ;
Bor, YC ;
Jin, L ;
Eisner-Smerage, L ;
Taylor, SJ ;
Rekosh, D ;
Hammarskjöld, ML .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (01) :92-103
[4]  
De Luca A, 2003, CANCER RES, V63, P1430
[5]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[6]  
Hastie T, 2008, The elements of statistical learning, Vsecond, DOI DOI 10.1007/978-0-387-21606-5
[7]  
Hastie T, 2001, GENOME BIOL, V2
[8]  
Her C, 2003, CANCER RES, V63, P865
[9]   RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO [J].
Hoege, C ;
Pfander, B ;
Moldovan, GL ;
Pyrowolakis, G ;
Jentsch, S .
NATURE, 2002, 419 (6903) :135-141
[10]  
Kaufmann L., 1990, Finding Groups in Data - An Introduction to Cluster Analysis