Reverse engineering of metabolic networks, a critical assessment

被引:21
作者
Hendrickx, Diana M. [1 ,2 ,3 ]
Hendriks, Margriet M. W. B. [2 ,3 ]
Eilers, Paul H. C. [4 ]
Smilde, Age K. [1 ,3 ]
Hoefsloot, Huub C. J. [1 ,3 ]
机构
[1] Univ Amsterdam, Swammerdam Inst Life Sci, NL-1012 WX Amsterdam, Netherlands
[2] Univ Med Ctr Utrecht, Dept Metab & Endocrine Dis, Utrecht, Netherlands
[3] Netherlands Metab Ctr, Leiden, Netherlands
[4] Erasmus MC, Dept Biostat, Rotterdam, Netherlands
关键词
IN-VIVO KINETICS; DEFICIENT NARCOLEPTIC HUMANS; SACCHAROMYCES-CEREVISIAE; MICROBIAL METABOLOMICS; BIOCHEMICAL NETWORKS; TIME-SERIES; DYNAMICS; YEAST; CONSTRUCTION; ACTIVATION;
D O I
10.1039/c0mb00083c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inferring metabolic networks from metabolite concentration data is a central topic in systems biology. Mathematical techniques to extract information about the network from data have been proposed in the literature. This paper presents a critical assessment of the feasibility of reverse engineering of metabolic networks, illustrated with a selection of methods. Appropriate data are simulated to study the performance of four representative methods. An overview of sampling and measurement methods currently in use for generating time-resolved metabolomics data is given and contrasted with the needs of the discussed reverse engineering methods. The results of this assessment show that if full inference of a real-world metabolic network is the goal there is a large discrepancy between the requirements of reverse engineering of metabolic networks and contemporary measurement practice. Recommendations for improved time-resolved experimental designs are given.
引用
收藏
页码:511 / 520
页数:10
相关论文
共 62 条
[1]  
Agrawal A, 2005, PROC WRLD ACAD SCI E, V9, P167
[2]   A test case of correlation metric construction of a reaction pathway from measurements [J].
Arkin, A ;
Shen, PD ;
Ross, J .
SCIENCE, 1997, 277 (5330) :1275-1279
[3]   STATISTICAL CONSTRUCTION OF CHEMICAL-REACTION MECHANISMS FROM MEASURED TIME-SERIES [J].
ARKIN, A ;
ROSS, J .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (03) :970-979
[4]   Zonation of labeling of lipogenic acetyl-CoA across the liver - Implications for studies of lipogenesis by mass isotopomer analysis [J].
Bederman, IR ;
Reszko, AE ;
Kasumov, T ;
David, F ;
Wasserman, DH ;
Kelleher, JK ;
Brunengraber, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (41) :43207-43216
[5]   Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation [J].
Bijlsma, S ;
Bobeldijk, L ;
Verheij, ER ;
Ramaker, R ;
Kochhar, S ;
Macdonald, IA ;
van Ommen, B ;
Smilde, AK .
ANALYTICAL CHEMISTRY, 2006, 78 (02) :567-574
[6]   Understanding in vivo benzenoid metabolism in petunia petal tissue [J].
Boatright, J ;
Negre, F ;
Chen, XL ;
Kish, CM ;
Wood, B ;
Peel, G ;
Orlova, I ;
Gang, D ;
Rhodes, D ;
Dudareva, N .
PLANT PHYSIOLOGY, 2004, 135 (04) :1993-2011
[7]   Metabolomics: quantification of intracellular metabolite dynamics [J].
Buchholz, A ;
Hurlebaus, J ;
Wandrey, C ;
Takors, R .
BIOMOLECULAR ENGINEERING, 2002, 19 (01) :5-15
[8]   New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale [J].
Buziol, S ;
Bashir, I ;
Baumeister, A ;
Claassen, W ;
Noisommit-Rizzi, N ;
Mailinger, W ;
Reuss, M .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 80 (06) :632-636
[9]   Metabolic network discovery through reverse engineering of metabolome data [J].
Cakir, Tunahan ;
Hendriks, Margriet M. W. B. ;
Westerhuis, Johan A. ;
Smilde, Age K. .
METABOLOMICS, 2009, 5 (03) :318-329
[10]   The origin of correlations in metabolomics data [J].
Camacho, Diogo ;
de la Fuente, Alberto ;
Mendes, Pedro .
METABOLOMICS, 2005, 1 (01) :53-63