Relativistic Levinson theorem in two dimensions

被引:57
作者
Dong, SH
Hou, XW
Ma, ZQ
机构
[1] Inst High Energy Phys, Beijing 100039, Peoples R China
[2] Univ Three Gorges, Dept Phys, Yichang 443000, Peoples R China
[3] China Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China
来源
PHYSICAL REVIEW A | 1998年 / 58卷 / 03期
关键词
D O I
10.1103/PhysRevA.58.2160
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the light of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation in two dimensions is established as a relation between the total number ni of the bound states and the sum of the phase shifts eta(i)(+/-M) of the scattering states with the angular momentum j: [GRAPHICS] The critical case, where the Dirac equation has a finite zero-momentum solution, is analyzed in detail. A zero-momentum solution is called a half-bound state if its wave function is finite but does not decay fast enough at infinity to be square integrable.
引用
收藏
页码:2160 / 2167
页数:8
相关论文
共 24 条
[1]  
[Anonymous], 1982, SCATTERING THEORY WA, DOI DOI 10.1007/978-3-642-88128-2
[2]   EXTENSIONS OF LEVINSON THEOREM - APPLICATION TO INDEXES AND FRACTIONAL CHARGE [J].
BLANKENBECLER, R ;
BOYANOVSKY, D .
PHYSICA D, 1986, 18 (1-3) :367-367
[3]   THRESHOLD BEHAVIOR AND LEVINSON THEOREM FOR TWO-DIMENSIONAL SCATTERING SYSTEMS - A SURPRISE [J].
BOLLE, D ;
GESZTESY, F ;
DANNEELS, C ;
WILK, SFJ .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :900-903
[4]  
DONG SH, IN PRESS PHYS REV A
[5]  
IWINSKI ZR, 1985, PHYS REV A, V31, P1229, DOI 10.1103/PhysRevA.31.1229
[6]   NODAL STRUCTURE AND PHASE-SHIFTS OF ZERO-INCIDENT-ENERGY WAVE-FUNCTIONS - MULTIPARTICLE SINGLE-CHANNEL SCATTERING [J].
IWINSKI, ZR ;
ROSENBERG, L ;
SPRUCH, L .
PHYSICAL REVIEW A, 1986, 33 (02) :946-953
[7]  
Jauch J. M., 1957, HELV PHYS ACTA, V30, P143
[8]   Scattering in one dimension: The coupled Schrodinger equation, threshold behaviour and Levinson's theorem [J].
Kiers, KA ;
vanDijk, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (12) :6033-6059
[9]  
Levinson N., 1949, Kgl. Danske Vidensk. Selsk. Mat-fys. Medd, V25, P9
[10]   Levinson theorem in two dimensions [J].
Lin, QG .
PHYSICAL REVIEW A, 1997, 56 (03) :1938-1944