Residual energies after slow quantum annealing

被引:58
作者
Suzuki, S [1 ]
Okada, M
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Chiba 2778561, Japan
[2] RIKEN, Brain Sci Inst, Wako, Saitama 3510198, Japan
关键词
quantum annealing; residual energy; numerical study; quantum adiabatic theorem;
D O I
10.1143/JPSJ.74.1649
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The features of residual energy after quantum annealing are investigated. The quantum annealing method exploits quantum fluctuations to find out the ground state of the classical disordered Hamiltonian. If the quantum fluctuation decreases sufficiently slowly and linearly with time, residual energy after quantum annealing decreases with the inverse square of annealing time. We show this feature of residual energy by numerical calculations for small systems and derive it on the basis of the quantum adiabatic theorem.
引用
收藏
页码:1649 / 1652
页数:4
相关论文
共 15 条
[1]   Quantum annealing of a disordered magnet [J].
Brooke, J ;
Bitko, D ;
Rosenbaum, TF ;
Aeppli, G .
SCIENCE, 1999, 284 (5415) :779-781
[2]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476
[3]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[4]   Adiabatic quantum computing for random satisfiability problems [J].
Hogg, T .
PHYSICAL REVIEW A, 2003, 67 (02) :7
[5]   RESIDUAL ENERGIES AFTER SLOW COOLING OF DISORDERED-SYSTEMS [J].
HUSE, DA ;
FISHER, DS .
PHYSICAL REVIEW LETTERS, 1986, 57 (17) :2203-2206
[6]   Quantum annealing in the transverse Ising model [J].
Kadowaki, T ;
Nishimori, H .
PHYSICAL REVIEW E, 1998, 58 (05) :5355-5363
[7]  
Landau L. D., 1977, QUANTUM MECH NONRELA
[8]   Quantum annealing by the path-integral Monte Carlo method:: The two-dimensional random Ising model -: art. no. 094203 [J].
Martonák, R ;
Santoro, GE ;
Tosatti, E .
PHYSICAL REVIEW B, 2002, 66 (09) :1-8
[9]  
Messiah A., 1962, QUANTUM MECH, V2
[10]   SHERRINGTON-KIRKPATRICK MODEL IN A TRANSVERSE FIELD - ABSENCE OF REPLICA SYMMETRY-BREAKING DUE TO QUANTUM FLUCTUATIONS [J].
RAY, P ;
CHAKRABARTI, BK ;
CHAKRABARTI, A .
PHYSICAL REVIEW B, 1989, 39 (16) :11828-11832