Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells

被引:793
作者
Buettner, Florian [1 ,2 ]
Natarajan, Kedar N. [2 ,3 ]
Casale, F. Paolo [2 ]
Proserpio, Valentina [2 ,3 ]
Scialdone, Antonio [2 ,3 ]
Theis, Fabian J. [1 ,4 ]
Teichmann, Sarah A. [2 ,3 ]
Marioni, John C. [2 ,3 ]
Stegie, Oliver [2 ]
机构
[1] Inst Computat Biol, Munchen German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Neuherberg, Germany
[2] European Bioinformat Inst, European Mol Biol Lab, Cambridge, England
[3] Wellcome Trust Sanger Inst, Hinxton, England
[4] Tech Univ Munich, Dept Math, D-80290 Munich, Germany
基金
欧洲研究理事会;
关键词
EMBRYONIC STEM-CELLS; GENE-EXPRESSION; FATE DECISIONS; SEQ ANALYSIS; MODELS; NOISE; TRANSCRIPTOMICS; MECHANISMS; LANDSCAPE; CYCLE;
D O I
10.1038/nbt.3102
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent technical developments have enabled the transcriptomes of hundreds of cells to be assayed in an unbiased manner, opening up the possibility that new subpopulations of cells can be found. However, the effects of potential confounding factors, such as the cell cycle, on the heterogeneity of gene expression and therefore on the ability to robustly identify subpopulations remain unclear. We present and validate a computational approach that uses latent variable models to account for such hidden factors. We show that our single-cell latent variable model (scLVM) allows the identification of otherwise undetectable subpopulations of cells that correspond to different stages during the differentiation of naive T cells into T helper 2 cells. Our approach can be used not only to identify cellular subpopulations but also to tease apart different sources of gene expression heterogeneity in single-cell transcriptomes.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 46 条
[41]   Microfluidic device for single-cell analysis [J].
Wheeler, AR ;
Throndset, WR ;
Whelan, RJ ;
Leach, AM ;
Zare, RN ;
Liao, YH ;
Farrell, K ;
Manger, ID ;
Daridon, A .
ANALYTICAL CHEMISTRY, 2003, 75 (14) :3581-3586
[42]   Epigenetic regulation of T cell fate and function [J].
Wilson, CB ;
Makar, KW ;
Perez-Melgosa, M .
JOURNAL OF INFECTIOUS DISEASES, 2002, 185 :S37-S45
[43]   Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing [J].
Xue, Zhigang ;
Huang, Kevin ;
Cai, Chaochao ;
Cai, Lingbo ;
Jiang, Chun-yan ;
Feng, Yun ;
Liu, Zhenshan ;
Zeng, Qiao ;
Cheng, Liming ;
Sun, Yi E. ;
Liu, Jia-yin ;
Horvath, Steve ;
Fan, Guoping .
NATURE, 2013, 500 (7464) :593-+
[44]   Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells [J].
Yan, Liying ;
Yang, Mingyu ;
Guo, Hongshan ;
Yang, Lu ;
Wu, Jun ;
Li, Rong ;
Liu, Ping ;
Lian, Ying ;
Zheng, Xiaoying ;
Yan, Jie ;
Huang, Jin ;
Li, Ming ;
Wu, Xinglong ;
Wen, Lu ;
Lao, Kaiqin ;
Li, Ruiqiang ;
Qiao, Jie ;
Tang, Fuchou .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (09) :1131-+
[45]   Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo [J].
Zhou, Meixia ;
McPherson, Lisa ;
Feng, Dongdong ;
Song, An ;
Dong, Chen ;
Lyu, Shu-Chen ;
Zhou, Lu ;
Shi, Xiaoyan ;
Ahn, Yong-Tae ;
Wang, Demin ;
Clayberger, Carol ;
Krensky, Alan M. .
JOURNAL OF IMMUNOLOGY, 2007, 178 (09) :5496-5504
[46]   GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors [J].
Zhu, JF ;
Yamane, H ;
Cote-Sierra, J ;
Guo, LY ;
Paul, WE .
CELL RESEARCH, 2006, 16 (01) :3-10