CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy

被引:130
作者
Ago, H [1 ]
Imamura, S
Okazaki, T
Saitoj, T
Yumura, M
Tsuji, M
机构
[1] Kyushu Univ, Inst Mat Chem & Engn, Kasuga, Fukuoka 8168580, Japan
[2] Natl Inst Adv Ind Sci & Technol, Res Ctr Adv Cardon Mat, CREST, Tsukuba, Ibaraki 3058565, Japan
关键词
D O I
10.1021/jp050307q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution are synthesized by thermal chemical vapor deposition (CVD) of methane over Fe/MgO catalyst on the basis of parametric study considering Fe loading, reaction temperature and time, methane concentration, and structure of a support material. We found that the porous MgO support gives the SWNTs with a narrow diameter distribution with the mean diameter and standard deviation of 0.93 and 0.06 nm, respectively, only when the Fe loading and reaction temperature are relatively low. The higher Fe loading and/or the higher reaction temperature enlarged the nanotube diameter, forming double-walled carbon nanotubes (DWNTs) in addition to SWNTs. This result indicates that only the diameter of Fe nanoparticles determines the growth of either SWNTs or DWNTs on the MgO support. The fluorescence and absorption spectra of the nanotube dispersion in D2O solution with sodium dodecyl sulfate (SDS) were studied to identify their chirality distribution. The fluorescence of the uniform-diameter SWNTs indicates the formation of the near armchair structures. On the other hand, the SWNTs synthesized over the catalyst with a high Fe loading, 3 wt %, showed a wide chirality distribution including the near zigzag structure. The synthesis of the SWNTs with a narrow diameter distribution could be applied to the selection of SWNTs with a specific chirality based on postsynthesis separation.
引用
收藏
页码:10035 / 10041
页数:7
相关论文
共 38 条
[1]   Roles of metal-support interaction in growth of single- and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO [J].
Ago, H ;
Nakamura, K ;
Uehara, N ;
Tsuji, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (49) :18908-18915
[2]   Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO [J].
Ago, H ;
Nakamura, K ;
Imamura, S ;
Tsuji, M .
CHEMICAL PHYSICS LETTERS, 2004, 391 (4-6) :308-313
[3]   Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles [J].
Ago, H ;
Ohshima, S ;
Uchida, K ;
Yumura, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (43) :10453-10456
[4]   Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes [J].
Alvarez, L ;
Righi, A ;
Guillard, T ;
Rols, S ;
Anglaret, E ;
Laplaze, D ;
Sauvajol, JL .
CHEMICAL PHYSICS LETTERS, 2000, 316 (3-4) :186-190
[5]   Characterization of single-walled carbon nanotubes (SWNTs) produced by CO disproportionation on Co-Mo catalysts [J].
Alvarez, WE ;
Pompeo, F ;
Herrera, JE ;
Balzano, L ;
Resasco, DE .
CHEMISTRY OF MATERIALS, 2002, 14 (04) :1853-1858
[6]   Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst [J].
Bachilo, SM ;
Balzano, L ;
Herrera, JE ;
Pompeo, F ;
Resasco, DE ;
Weisman, RB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (37) :11186-11187
[7]   Structure-assigned optical spectra of single-walled carbon nanotubes [J].
Bachilo, SM ;
Strano, MS ;
Kittrell, C ;
Hauge, RH ;
Smalley, RE ;
Weisman, RB .
SCIENCE, 2002, 298 (5602) :2361-2366
[8]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[9]   Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growth temperatures [J].
Chen, Y ;
Ciuparu, D ;
Lim, SY ;
Yang, YH ;
Haller, GL ;
Pfefferle, L .
JOURNAL OF CATALYSIS, 2004, 225 (02) :453-465
[10]   Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons [J].
Cheng, HM ;
Li, F ;
Su, G ;
Pan, HY ;
He, LL ;
Sun, X ;
Dresselhaus, MS .
APPLIED PHYSICS LETTERS, 1998, 72 (25) :3282-3284