An effective version of Polya's theorem on positive definite forms

被引:30
作者
deLoera, JA
Santos, F
机构
[1] UNIV CANTABRIA,FAC CIENCIAS,DPTO MAT EST & COMP,E-39071 SANTANDER,SPAIN
[2] CORNELL UNIV,CTR APPL MATH,E THEORY CTR 657,ITHACA,NY 14853
关键词
D O I
10.1016/0022-4049(95)00042-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a real homogeneous polynomial F, strictly positive in the non-negative orthant, Polya's theorem says that for a sufficiently large exponent p the coefficients of F(x(1),...,x(n)) (x(1)+...+x(n))(p) are strictly positive. The smallest such p will be called the Polya exponent of F. We present a new proof for Polya's result, which allows us to obtain an explicit upper bound on the Polya exponent when F has rational coefficients. An algorithm to obtain reasonably good bounds for specific instances is also derived. Polya's theorem has appeared before in constructive solutions of Hilbert's 17th problem for positive definite forms [4]. We also present a different procedure to do this kind of construction.
引用
收藏
页码:231 / 240
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 1987, Ergebnisse der Mathematik und ihrer Grenzgebiete
[2]  
DELZELL CN, COMPUTATIONAL ALGEBR, V109
[3]  
Farin G., 1986, Computer-Aided Geometric Design, V3, P83, DOI 10.1016/0167-8396(86)90016-6
[4]  
HABICHT W, 1940, COMMENT MATH HELV, V12, P317
[5]  
Hardy G. H., 1967, INEQUALITIES
[6]  
LOMBARDI H, 1991, PROG MATH, V94, P263
[7]  
Polya G., 1928, VIERTELJSCHR NATURFO, V73, P141
[8]  
REZNICK B, 1993, IN PRESS MATH Z
[9]  
ROBINSON A, 1975, LECT NOTES MATH, V498, P15
[10]  
Solerno P., 1991, Applicable Algebra in Engineering, Communication and Computing, V2, P1, DOI 10.1007/BF01810850