Numerical computation of canards

被引:79
作者
Guckenheimer, J [1 ]
Hoffman, K
Weckesser, W
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Univ Maryland Baltimore Cty, Dept Math, Baltimore, MD 21250 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2000年 / 10卷 / 12期
基金
美国国家科学基金会;
关键词
D O I
10.1142/S0218127400001742
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Singularly perturbed systems of ordinary differential equations arise in many biological, physical and chemical systems. We present an example of a singularly perturbed system of ordinary differential equations that arises as a model of the electrical potential across the cell membrane of a neuron. We describe two periodic solutions of this example that were numerically computed using continuation of solutions of boundary value problems. One of these periodic orbits contains canards, trajectory segments that follow unstable portions of a slow manifold. We identify several mechanisms that lead to the formation of these and other canards in this example.
引用
收藏
页码:2669 / 2687
页数:19
相关论文
共 24 条
[1]  
[Anonymous], 1998, AUTO 97 CONTINUATION
[2]  
Arnol'd V. I., 1968, RUSS MATH SURV, V23, P1
[3]  
Arnol'd V. I., 1994, DYNAMICAL SYSTEMS
[4]  
BENOIT E., 1981, COLLECTANEA MATH BAR, V31, P37
[5]  
COHEN AH, 1988, NEURAL COMPUTATION R
[6]   THE CANARD UNCHAINED OR HOW FAST SLOW DYNAMICAL-SYSTEMS BIFURCATE [J].
DIENER, M .
MATHEMATICAL INTELLIGENCER, 1984, 6 (03) :38-49
[7]  
Dumortier F, 1996, MEMOIRS AM MATH SOC, V577
[8]  
ECKHAUS W, 1983, LECT NOTES MATH, V985, P449
[10]  
GUCKENHEIMER J, 1997, TORUS MAPS WEAK COUP