Error estimates for finite element methods for scalar conservation laws

被引:73
作者
Cockburn, B
Gremaud, PA
机构
[1] School of Mathematics, University of Minnesota, 127 Vincent Hall, Minneapolis
[2] Department of Mathematics, North Carolina State University, Box 8205, Raleigh
关键词
error estimates; streamline diffusion method; discontinuous galerkin method; multidimensional conservation laws;
D O I
10.1137/0733028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, new a posteriori error estimates for the shock-capturing streamline diffusion (SCSD) method and the shock-capturing discontinuous galerkin (SCDG) method for scalar conservation laws are obtained. These estimates are then used to prove that the SCSD method and the SCDG method converge to the entropy solution with a rate of at least h(1/8) and h(1/4), respectively, in the L(infinity)(L(1))-norm. The triangulations are made of general acute simplices and the approximate solution is taken to be piecewise a polynomial of degree k. The result is independent of the dimension of the space.
引用
收藏
页码:522 / 554
页数:33
相关论文
共 12 条
[1]  
COCKBURN B, 1994, MATH COMPUT, V63, P77, DOI 10.1090/S0025-5718-1994-1240657-4
[2]   MEASURE-VALUED SOLUTIONS TO CONSERVATION-LAWS [J].
DIPERNA, RJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 88 (03) :223-270
[4]  
JAFFRE J, 1993, CONVERGENCE DISCONTI
[5]  
JOHNSON C, 1990, MATH COMPUT, V54, P107, DOI 10.1090/S0025-5718-1990-0995210-0
[6]  
JOHNSON C, 1991, STREAMLINE DIFFUSION
[7]  
Kruzkov SN, 1970, Mat. Sb. (N.S.), V10, P217, DOI [10.1070/SM1970v010n02ABEH002156, DOI 10.1070/SM1970V010N02ABEH002156]
[8]  
Kuznetsov N. N., 1976, USSR COMP MATH MATH, V16, P105, DOI DOI 10.1016/0041-5553(76)90046-X
[9]  
Ortega J.M, 1970, CLASSICS APPL MATH
[10]  
SZEPESSY A, 1989, MATH COMPUT, V53, P527, DOI 10.1090/S0025-5718-1989-0979941-6