Well-posed initial-boundary evolution in general relativity -: art. no. 041501

被引:82
作者
Szilágyi, B
Winicour, J
机构
[1] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.68.041501
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Maximally dissipative boundary conditions are applied to the initial-boundary value problem for Einstein's equations in harmonic coordinates to show that it is well posed for homogeneous boundary data and for boundary data that is small in a linearized sense. The method is implemented as a nonlinear evolution code, which satisfies convergence tests in the nonlinear regime and is stable in the weak field regime. A linearized version has been stably matched to a characteristic code to compute the gravitational wave form radiated to infinity.
引用
收藏
页数:5
相关论文
共 27 条
[1]  
ALCUBIERRE M, GRQC0305023
[2]  
Arnowitt R. L., 1962, GRAVITATION INTRO CU
[3]   Cauchy-characteristic evolution and waveforms [J].
Bishop, NT ;
Gomez, R ;
Holvorcem, PR ;
Matzner, RA ;
Papadopoulos, P ;
Winicour, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 136 (01) :140-167
[4]   Grazing collisions of black holes via the excision of singularities [J].
Brandt, S ;
Correll, R ;
Gómez, R ;
Huq, M ;
Laguna, P ;
Lehner, L ;
Marronetti, P ;
Matzner, RA ;
Neilsen, D ;
Pullin, J ;
Schnetter, E ;
Shoemaker, D ;
Winicour, J .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5496-5499
[5]   Convergence and stability in numerical relativity [J].
Calabrese, G ;
Pullin, J ;
Sarbach, O ;
Tiglio, M .
PHYSICAL REVIEW D, 2002, 66 (04)
[6]   Constraint-preserving boundary conditions in numerical relativity [J].
Calabrese, G ;
Lehner, L ;
Tiglio, M .
PHYSICAL REVIEW D, 2002, 65 (10)
[7]   EINSTEIN EVOLUTION EQUATIONS AS A FIRST-ORDER QUASILINEAR SYMMETRIC HYPERBOLIC SYSTEM .1. [J].
FISCHER, AE ;
MARSDEN, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 28 (01) :1-&
[8]  
Fock V, 1964, THEORY SPACE TIME GR, P392
[9]   *THEOREME DEXISTENCE POUR CERTAINS SYSTEMES DEQUATIONS AUX DERIVEES PARTIELLES NON LINEAIRES [J].
FOURESBRUHAT, Y .
ACTA MATHEMATICA, 1952, 88 (03) :141-225
[10]   The initial boundary value problem for Einstein's vacuum field equation [J].
Friedrich, H ;
Nagy, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :619-655