Mutation of proline residues in the NH2-terminal region of the multidrug resistance protein, MRP1 (ABCC1):: effects on protein expression, membrane localization, and transport function

被引:22
作者
Ito, K
Weigl, KE
Deeley, RG
Cole, SPC
机构
[1] Queens Univ, Canc Res Labs, Kingston, ON K7L 3N6, Canada
[2] Queens Univ, Dept Pathol & Mol Med, Kingston, ON K7L 3N6, Canada
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2003年 / 1615卷 / 1-2期
基金
加拿大健康研究院;
关键词
multidrug resistance protein; MRP; proline substitution; transmembrane helix; cytoplasmic loop; monoclonal antibody epitope;
D O I
10.1016/S0005-2736(03)00228-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Multidrug Resistance Protein, MRP1 (ABCC1) confers drug resistance and transports organic anions such as leukotriene C-4 (LTC4) and 17beta-estradiol 17-(beta-D-glucuronide) (E(2)17betaG). Previous studies showed that portions of the first membrane spanning domain (MSD1) and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. We have replaced 12 prolines in MSD1 and CL3 with alanine and determined the effects of these substitutions on MRP1 expression and transport activity. All singly substituted MRP1-Pro mutants could be expressed in HeLa cells, except MRP1-P104A. The expressed mutants also transported LTC4 and E(2)17betaG, and their K-m (LTC4) values were similar to wild-type MRP1. Expression of the double mutant MRP1-P42/51A was reduced by >80% although it localized to the plasma membrane and transported organic anions. MRP1 expression was also reduced when the first transmembrane helix (amino acids 37-54) was deleted. In contrast, the phenotypes of the multiply substituted CL3 mutants MRP1-P196/205/207/209A and MRP1-P235/255A were comparable to wild-type MRP1. However, Pro(255)-substituted MRP1 mutants showed reduced immunoreactivity with a monoclonal antibody (MAb) whose epitope is located in CL3. We conclude that certain prolines in MSD1 and CL3 play a role in the expression and structure of MRP1. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 40 条
[1]   Biochemical, cellular, and pharmacological aspects of the multidrug transporter [J].
Ambudkar, SV ;
Dey, S ;
Hrycyna, CA ;
Ramachandra, M ;
Pastan, I ;
Gottesman, MM .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 :361-398
[2]  
Bakos É, 2000, J CELL SCI, V113, P4451
[3]   Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain [J].
Bakos, E ;
Evers, R ;
Szakács, G ;
Tusnády, GE ;
Welker, E ;
Szabó, K ;
de Haas, M ;
van Deemter, L ;
Borst, P ;
Váradi, A ;
Sarkadi, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :32167-32175
[4]  
Beck WT, 1996, CANCER RES, V56, P3010
[5]   Cystic fibrosis: A worldwide analysis of CFTR mutations - Correlation with incidence data and application to screening [J].
Bobadilla, JL ;
Macek, M ;
Fine, JP ;
Farrell, PM .
HUMAN MUTATION, 2002, 19 (06) :575-606
[6]   Mammalian ABC transporters in health and disease [J].
Borst, P ;
Elferink, RO .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :537-592
[7]   HYPOTHESIS ABOUT THE FUNCTION OF MEMBRANE-BURIED PROLINE RESIDUES IN TRANSPORT PROTEINS [J].
BRANDL, CJ ;
DEBER, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (04) :917-921
[8]   OVEREXPRESSION OF A TRANSPORTER GENE IN A MULTIDRUG-RESISTANT HUMAN LUNG-CANCER CELL-LINE [J].
COLE, SPC ;
BHARDWAJ, G ;
GERLACH, JH ;
MACKIE, JE ;
GRANT, CE ;
ALMQUIST, KC ;
STEWART, AJ ;
KURZ, EU ;
DUNCAN, AMV ;
DEELEY, RG .
SCIENCE, 1992, 258 (5088) :1650-1654
[9]   Proline-induced distortions of transmembrane helices [J].
Cordes, FS ;
Bright, JN ;
Sansom, MSP .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 323 (05) :951-960
[10]  
FLENS MJ, 1994, CANCER RES, V54, P4557