Src-dependent phosphorylation of ASAP1 regulates podosomes

被引:78
作者
Bharti, Sanita
Inoue, Hiroki
Bharti, Kapil
Hirsch, Dianne S.
Nie, Zhongzhen
Yoon, Hye-Young
Artym, Vira
Yamada, Kenneth A.
Mueller, Susette C.
Barr, Valarie A.
Randazzo, Paul A.
机构
[1] NCI, Ctr Canc Res, Lab Cellular & Mol Biol, Bethesda, MD USA
[2] NINDS, Mammalian Dev Sect, Bethesda, MD USA
[3] US FDA, Bethesda, MD USA
[4] NIH, Natl Inst Dent & Craniofacial Res, Bethesda, MD USA
[5] Georgetown Univ, Washington, DC USA
关键词
D O I
10.1128/MCB.01781-06
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Invadopodia are Src-induced cellular structures that are thought to mediate tumor invasion. ASAP1, an Arf GTPase-activating protein (GAP) containing Src homology 3 (SH3) and Bin, amphiphysin, and RVS161/167 (BAR) domains, is a substrate of Src that controls invadopodia. We have examined the structural requirements for ASAP1-dependent formation of invadopodia and related structures in NIH 3T3 fibroblasts called podosomes. We found that both predominant splice variants of ASAP1 (ASAP1a and ASAP1b) associated with invadopodia and podosomes. Podosomes were highly dynamic, with rapid turnover of both ASAP1 and actin. Reduction of ASAP1 levels by small interfering RNA blocked formation of invadopodia and podosomes. Podosomes were formed in NIH 3T3 fibroblasts in which endogenous ASAP1 was replaced with either recombinant ASAP1a or ASAP1b. ASAP1 mutants that lacked the Src binding site or GAP activity functioned as well as wild-type ASAP1 in the formation of podosomes. Recombinant ASAP1 lacking the BAR domain, the SH3 domain, or the Src phosphorylation site did not support podosome formation. Based on these results, we conclude that ASAP1 is a critical target of tyrosine kinase signaling involved in the regulation of podosomes and invadopodia and speculate that ASAP1 may function as a coincidence detector of simultaneous protein association through the ASAP1 SH3 domain and phosphorylation by Src.
引用
收藏
页码:8271 / 8283
页数:13
相关论文
共 37 条
[1]   The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling [J].
Arold, S ;
Franken, P ;
Strub, MP ;
Hoh, F ;
Benichou, S ;
Benarous, R ;
Dumas, C .
STRUCTURE, 1997, 5 (10) :1361-1372
[2]   An invasion-related complex of cortactin, paxillin and PKCμ associates with invadopodia at sites of extracellular matrix degradation [J].
Bowden, ET ;
Barth, M ;
Thomas, D ;
Glazer, RI ;
Mueller, SC .
ONCOGENE, 1999, 18 (31) :4440-4449
[3]   ASAP1, a phospholipid-dependent Arf GTPase-activating protein that associates with and is phosphorylated by Src [J].
Brown, MT ;
Andrade, J ;
Radhakrishna, H ;
Donaldson, JG ;
Cooper, JA ;
Randazzo, PA .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (12) :7038-7051
[4]   Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry [J].
Brunton, VG ;
MacPherson, IRJ ;
Frame, MC .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2004, 1692 (2-3) :121-144
[5]   Foot and mouth: Podosomes, invadopodia and circular dorsal ruffles [J].
Buccione, R ;
Orth, JD ;
McNiven, MA .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2004, 5 (08) :647-657
[6]   Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion [J].
Carragher, NO ;
Frame, MC .
TRENDS IN CELL BIOLOGY, 2004, 14 (05) :241-249
[7]   DDEF1 is located in an amplified region of chromosome 8q and is overexpressed in uveal melanoma [J].
Ehlers, JP ;
Worley, L ;
Onken, MD ;
Harbour, JW .
CLINICAL CANCER RESEARCH, 2005, 11 (10) :3609-3613
[8]   Mechanisms of membrane deformation [J].
Farsad, K ;
De Camilli, P .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (04) :372-381
[9]   Generation of high curvature membranes mediated by direct endophilin bilayer interactions [J].
Farsad, K ;
Ringstad, N ;
Takei, K ;
Floyd, SR ;
Rose, K ;
De Camilli, P .
JOURNAL OF CELL BIOLOGY, 2001, 155 (02) :193-200
[10]   DEF-1/ASAP1 is a GTPase-activating protein (GAP) for ARF1 that enhances cell motility through a GAP-dependent mechanism [J].
Furman, C ;
Short, SM ;
Subramanian, RR ;
Zetter, BR ;
Roberts, TM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7962-7969