Topology of an arithmetic plane

被引:25
作者
Francon, J
机构
关键词
D O I
10.1016/0304-3975(95)00059-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An arithmetic plane is the set of points (x,y,z) in Z(3) satisfying the inequalities mu less than or equal to ax + by + cz < mu + w, where all parameters are integers and w > 0. We show that for w = \a\ + \b\ + \c\, a plane can be furnished with a canonical structure of a two-dimensional, connected, orientable combinatoric manifold without boundary, whose faces are quadrangles and whose vertices are points on the plane. This result is of interest in three-dimensional computer imaging.
引用
收藏
页码:159 / 176
页数:18
相关论文
共 17 条
[1]  
ANDRES E, 1993, 3 C GEOM DISCR IM FO
[2]  
BERTRAND Y, 1993, P TAPSOFT 93 ORSAY
[3]  
BORIANNE P, 1994, ACTES 4 C GEOM DISCR
[4]  
DBLED I, 1994, VISION GEOMETRY, V3
[5]  
FRANCON J, 1995, CVGIP-GRAPH MODEL IM, V57, P20
[6]  
FRANCON J, 1993, 3 C GEOM DISCR IM FO
[7]  
FRANCON J, 1990, 115 C NAT SOC SAV AV
[8]  
GRIFFITHS H, 1981, SURFACES
[9]   DISCRETE MULTIDIMENSIONAL JORDAN SURFACES [J].
HERMAN, GT .
CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1992, 54 (06) :507-515
[10]   A JORDAN SURFACE THEOREM FOR 3-DIMENSIONAL DIGITAL SPACES [J].
KOPPERMAN, R ;
MEYER, PR ;
WILSON, RG .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (02) :155-161