Discrete and Structurally Unique Proteins (Tapirins) Mediate Attachment of Extremely Thermophilic Caldicellulosiruptor Species to Cellulose

被引:22
作者
Blumer-Schuette, Sara E. [1 ]
Alahuhta, Markus [2 ]
Conway, Jonathan M. [1 ]
Lee, Laura L. [1 ]
Zurawski, Jeffrey V. [1 ]
Giannone, Richard J. [3 ]
Hettich, Robert L. [3 ]
Lunin, Vladimir V. [2 ]
Himmel, Michael E. [2 ]
Kelly, Robert M. [1 ]
机构
[1] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[2] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA
[3] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA
基金
美国能源部;
关键词
CARBOHYDRATE-BINDING MODULES; BACTERIUM RUMINOCOCCUS-ALBUS; IN-SITU PROTEOLYSIS; FIBROBACTER-SUCCINOGENES; SURFACE DISPLAY; ADHESION; YEAST; REVEALS; FAMILY; DOMAIN;
D O I
10.1074/jbc.M115.641480
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins ("tapirins," origin from Maori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tapirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tapirins are specific to these extreme thermophiles. Tapirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tapirins for cellulose. Crystallization of a cellulose-binding truncation from one tapirin indicated that these proteins form a long beta-helix core with a shielded hydro-phobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tapirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.
引用
收藏
页码:10645 / 10656
页数:12
相关论文
共 73 条
[1]   Cellulosic ethanol production by combination of cellulase-displaying yeast cells [J].
Baek, Seung-Ho ;
Kim, Sujin ;
Lee, Kyusung ;
Lee, Jung-Kul ;
Hahn, Ji-Sook .
ENZYME AND MICROBIAL TECHNOLOGY, 2012, 51 (6-7) :366-372
[2]   The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides [J].
Bayer, EA ;
Belaich, JP ;
Shoham, Y ;
Lamed, R .
ANNUAL REVIEW OF MICROBIOLOGY, 2004, 58 :521-554
[3]   Thermophilic lignocellulose deconstruction [J].
Blumer-Schuette, Sara E. ;
Brown, Steven D. ;
Sander, Kyle B. ;
Bayer, Edward A. ;
Kataeva, Irina ;
Zurawski, Jeffrey V. ;
Conway, Jonathan M. ;
Adams, Michael W. W. ;
Kelly, Robert M. .
FEMS MICROBIOLOGY REVIEWS, 2014, 38 (03) :393-448
[4]   Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass [J].
Blumer-Schuette, Sara E. ;
Giannone, Richard J. ;
Zurawski, Jeffrey V. ;
Ozdemir, Inci ;
Ma, Qin ;
Yin, Yanbin ;
Xu, Ying ;
Kataeva, Irina ;
Poole, Farris L., II ;
Adams, Michael W. W. ;
Hamilton-Brehm, Scott D. ;
Elkins, James G. ;
Larimer, Frank W. ;
Land, Miriam L. ;
Hauser, Loren J. ;
Cottingham, Robert W. ;
Hettich, Robert L. ;
Kelly, Robert M. .
JOURNAL OF BACTERIOLOGY, 2012, 194 (15) :4015-4028
[5]   Phylogenetic, Microbiological, and Glycoside Hydrolase Diversities within the Extremely Thermophilic, Plant Biomass-Degrading Genus Caldicellulosiruptor [J].
Blumer-Schuette, Sara E. ;
Lewis, Derrick L. ;
Kelly, Robert M. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (24) :8084-8092
[6]   Yeast surface display for screening combinatorial polypeptide libraries [J].
Boder, ET ;
Wittrup, KD .
NATURE BIOTECHNOLOGY, 1997, 15 (06) :553-557
[7]   Carbohydrate-binding modules: fine-tuning polysaccharide recognition [J].
Boraston, AB ;
Bolam, DN ;
Gilbert, HJ ;
Davies, GJ .
BIOCHEMICAL JOURNAL, 2004, 382 (03) :769-781
[8]   Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases [J].
Brulc, Jennifer M. ;
Antonopoulos, Dionysios A. ;
Miller, Margret E. Berg ;
Wilson, Melissa K. ;
Yannarell, Anthony C. ;
Dinsdale, Elizabeth A. ;
Edwards, Robert E. ;
Frank, Edward D. ;
Emerson, Joanne B. ;
Wacklin, Pirjo ;
Coutinho, Pedro M. ;
Henrissat, Bernard ;
Nelson, Karen E. ;
White, Bryan A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (06) :1948-1953
[9]   Revealing Nature's Cellulase Diversity: The Digestion Mechanism of Caldicellulosiruptor bescii CelA [J].
Brunecky, Roman ;
Alahuhta, Markus ;
Xu, Qi ;
Donohoe, Bryon S. ;
Crowley, Michael F. ;
Kataeva, Irina A. ;
Yang, Sung-Jae ;
Resch, Michael G. ;
Adams, Michael W. W. ;
Lunin, Vladimir V. ;
Himmel, Michael E. ;
Bomble, Yannick J. .
SCIENCE, 2013, 342 (6165) :1513-1516
[10]   BLAST plus : architecture and applications [J].
Camacho, Christiam ;
Coulouris, George ;
Avagyan, Vahram ;
Ma, Ning ;
Papadopoulos, Jason ;
Bealer, Kevin ;
Madden, Thomas L. .
BMC BIOINFORMATICS, 2009, 10