Modified synthesis of [Fe/LiF/C] nanocomposite, and its application as conversion cathode material in lithium batteries

被引:46
作者
Prakash, Raju [1 ]
Wall, Clemens [1 ]
Mishra, Ajay Kumar [1 ]
Kuebel, Christian [1 ]
Ghafari, Mohammad [1 ]
Hahn, Horst [1 ]
Fichtner, Maximilian [1 ]
机构
[1] KIT, Inst Nanotechnol INT, D-76021 Karlsruhe, Germany
关键词
Ferrocene; Metal fluoride; Lithium-ion battery; Carbon nanotube; Pyrolysis; Conversion cathode material; METAL FLUORIDE NANOCOMPOSITES; HIGH-CAPACITY; ELECTRODE MATERIALS; ION BATTERIES; HIGH-POWER; LI; PERFORMANCE; STORAGE;
D O I
10.1016/j.jpowsour.2011.03.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In an attempt to enhance the energy storage capacity and discharge voltage, a new cathode material based on ferrocene and LiF for lithium-ion batteries has been explored [Fe/LiF/C] nanocomposite (1) has been synthesized by pyrolysis of a ferrocene/LiF mixture at 700 degrees C using a rotating quartz tube setup in a furnace. The structure and morphology of the composite were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Brunauer-Emmer-Teller (BET) analysis, Raman, and Mossbauer spectroscopy. The nanocomposite is composed of well-defined nanotubes which are interlinked by graphitic shell-type structures containing uniformly distribution of Fe, Fe-C, and LiF nanoparticles. The binder-free nanocomposite cathode showed enhanced electrochemical performance with the reversible specific capacity of 230 mAh g(-1) (1.3-4.3 V) at 20.8 mAg(-1) at room temperature. It exhibited a remarkable cyclic stability and good rate capability performances. The morphology of 1 was changed by ball milling, and the resulting nanocomposite 2 did not show any cyclic stability as a cathode. Thus, the cyclic stability and rate capability performances of 1 were attributed to its structure and morphology. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:5936 / 5944
页数:9
相关论文
共 32 条
[1]   Cathode performance and voltage estimation of metal trihalides [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :716-719
[2]   Carbon metal fluoride nanocomposites - High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries [J].
Badway, F ;
Cosandey, F ;
Pereira, N ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1318-A1327
[3]   Carbon-metal fluoride nanocomposites -: Structure and electrochemistry of FeF3:C [J].
Badway, F ;
Pereira, N ;
Cosandey, F ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) :A1209-A1218
[4]   STRUCTURAL EVOLUTION OF SPUTTERED AMORPHOUS FE1-XCX FILMS FOR 0.19-LESS-THAN-OR-EQUAL-TO X-LESS-THAN-OR-EQUAL-TO 0.49 [J].
BAUERGROSSE, E ;
LECAER, G .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (04) :485-500
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[7]  
GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO, P318
[8]   Nanostructured materials for electrochemical energy conversion and storage devices [J].
Guo, Yu-Guo ;
Hu, Jin-Song ;
Wan, Li-Jun .
ADVANCED MATERIALS, 2008, 20 (15) :2878-2887
[9]   Electrodes with high power and high capacity for rechargeable lithium batteries [J].
Kang, KS ;
Meng, YS ;
Bréger, J ;
Grey, CP ;
Ceder, G .
SCIENCE, 2006, 311 (5763) :977-980
[10]   Fabrication of FeF3 Nanoflowers on CNT Branches and Their Application to High Power Lithium Rechargeable Batteries [J].
Kim, Sung-Wook ;
Seo, Dong-Hwa ;
Gwon, Hyeokjo ;
Kim, Jongsoon ;
Kang, Kisuk .
ADVANCED MATERIALS, 2010, 22 (46) :5260-5264