Geometry of sequence working memory in macaque prefrontal cortex

被引:99
作者
Xie, Yang [1 ]
Hu, Peiyao [1 ]
Li, Junru [1 ]
Chen, Jingwen [1 ]
Song, Weibin [2 ,3 ]
Wang, Xiao-Jing [4 ]
Yang, Tianming [1 ]
Dehaene, Stanislas [5 ,6 ]
Tang, Shiming [2 ,3 ,7 ]
Min, Bin [8 ]
Wang, Liping [1 ]
机构
[1] Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Inst Neurosci, Key Lab Primate Neurobiol, Shanghai 200031, Peoples R China
[2] Peking Univ, Sch Life Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing 100871, Peoples R China
[4] NYU, Ctr Neural Sci, New York, NY 10003 USA
[5] Univ Paris Saclay, NeuroSpin Ctr, Cognit Neuroimaging Unit, CEA,INSERM, F-91191 Gif Sur Yvette, France
[6] Univ Paris Sci Lettres, Coll France, F-75005 Paris, France
[7] Peking Univ, IDG McGovern Inst Brain Res, Beijing 100871, Peoples R China
[8] Shanghai Ctr Brain Sci & Brain Inspired Technol, Shanghai 200031, Peoples R China
关键词
SERIAL ORDER; SHORT-TERM; REPRESENTATION; DYNAMICS; BINDING; OBJECTS; MODEL;
D O I
10.1126/science.abm0204
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
How the brain stores a sequence in memory remains largely unknown. We investigated the neural code underlying sequence working memory using two-photon calcium imaging to record thousands of neurons in the prefrontal cortex of macaque monkeys memorizing and then reproducing a sequence of locations after a delay. We discovered a regular geometrical organization: The high-dimensional neural state space during the delay could be decomposed into a sum of low-dimensional subspaces, each storing the spatial location at a given ordinal rank, which could be generalized to novel sequences and explain monkey behavior. The rank subspaces were distributed across large overlapping neural groups, and the integration of ordinal and spatial information occurred at the collective level rather than within single neurons. Thus, a simple representational geometry underlies sequence working memory.
引用
收藏
页码:632 / +
页数:46
相关论文
共 46 条
[1]   Modeling compositionality by dynamic binding of synfire chains [J].
Abeles, M ;
Hayon, G ;
Lehmann, D .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2004, 17 (02) :179-201
[2]   ENCODING OF SPATIAL LOCATION BY POSTERIOR PARIETAL NEURONS [J].
ANDERSEN, RA ;
ESSICK, GK ;
SIEGEL, RM .
SCIENCE, 1985, 230 (4724) :456-458
[3]   Discovering Event Structure in Continuous Narrative Perception and Memory [J].
Baldassano, Christopher ;
Chen, Janice ;
Zadbood, Asieh ;
Pillow, Jonathan W. ;
Hasson, Uri ;
Norman, Kenneth A. .
NEURON, 2017, 95 (03) :709-+
[4]  
BARONE P, 1989, EXP BRAIN RES, V78, P447
[5]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[6]   The Geometry of Abstraction in the Hippocampus and Prefrontal Cortex [J].
Bernardi, Silvia ;
Benna, Marcus K. ;
Rigotti, Mattia ;
Munuera, Jerome ;
Fusi, Stefano ;
Salzman, C. Daniel .
CELL, 2020, 183 (04) :954-+
[7]   From numerosity to ordinal rank: a gain-field model of serial order representation in cortical working memory [J].
Botvinick, Matthew ;
Watanabe, Takamitsu .
JOURNAL OF NEUROSCIENCE, 2007, 27 (32) :8636-8642
[8]   Neuronal oscillations in cortical networks [J].
Buzsáki, G ;
Draguhn, A .
SCIENCE, 2004, 304 (5679) :1926-1929
[9]   Ultrasensitive fluorescent proteins for imaging neuronal activity [J].
Chen, Tsai-Wen ;
Wardill, Trevor J. ;
Sun, Yi ;
Pulver, Stefan R. ;
Renninger, Sabine L. ;
Baohan, Amy ;
Schreiter, Eric R. ;
Kerr, Rex A. ;
Orger, Michael B. ;
Jayaraman, Vivek ;
Looger, Loren L. ;
Svoboda, Karel ;
Kim, Douglas S. .
NATURE, 2013, 499 (7458) :295-+
[10]   Neural population dynamics during reaching [J].
Churchland, Mark M. ;
Cunningham, John P. ;
Kaufman, Matthew T. ;
Foster, Justin D. ;
Nuyujukian, Paul ;
Ryu, Stephen I. ;
Shenoy, Krishna V. .
NATURE, 2012, 487 (7405) :51-+