Robust nonlinear task space control for 6 DOF parallel manipulator

被引:103
作者
Kim, HS [1 ]
Cho, YM [1 ]
Lee, KI [1 ]
机构
[1] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151, South Korea
关键词
6 DOF manipulator; alpha-beta tracker; friction estimator; robust nonlinear task space control;
D O I
10.1016/j.automatica.2005.04.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a robust nonlinear controller equipped with a friction estimator for a 6 degree of freedom (DOF) parallel manipulator in the task space coordinates. The requisite 6 DOF system states for the task space control are acquired by an alpha-beta tracker and a numerical forward kinematic solution. The Friedland-Park friction observer in the joint space coordinates provides friction estimates that help to improve the control performance. Finally, the RNTC turns out to outper form a nonlinear task space control and a popularly adopted PID control with the friction estimator in the joint space coordinates. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1591 / 1600
页数:10
相关论文
共 17 条
[1]  
AMSTRONGHELOUVR.B, 1994, AUTOMATICA, V30, P1083
[2]   A NEW CLASS OF STABILIZING CONTROLLERS FOR UNCERTAIN DYNAMICAL-SYSTEMS [J].
BARMISH, BR ;
CORLESS, M ;
LEITMANN, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1983, 21 (02) :246-255
[3]   Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach [J].
Dasgupta, B ;
Mruthyunjaya, TS .
MECHANISM AND MACHINE THEORY, 1998, 33 (07) :993-1012
[4]  
DEWIT CC, 1996, THEORY ROBOT CONTROL
[5]   ON ADAPTIVE FRICTION COMPENSATION [J].
FRIEDLAND, B ;
PARK, YJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (10) :1609-1612
[6]  
Honegger M., 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), P1930, DOI 10.1109/ROBOT.2000.844877
[7]  
JUNG GH, 1993, P 32 SICE C KAN JAP, P1239
[8]  
Kang JY, 1996, IEEE DECIS CONTR P, P3014, DOI 10.1109/CDC.1996.573582
[9]  
Khalil HK., 1992, NONLINEAR SYSTEMS
[10]  
Kim DH, 2000, J ROBOTIC SYST, V17, P527, DOI 10.1002/1097-4563(200010)17:10<527::AID-ROB2>3.0.CO