Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter

被引:1451
作者
Baughman, Joshua M. [1 ,2 ,3 ,4 ]
Perocchi, Fabiana [1 ,2 ,3 ,4 ]
Girgis, Hany S. [1 ,2 ,3 ,4 ]
Plovanich, Molly [1 ,2 ,3 ,4 ]
Belcher-Timme, Casey A. [1 ,2 ,3 ,4 ]
Sancak, Yasemin [1 ,2 ,3 ,4 ]
Bao, X. Robert [1 ,2 ,3 ,4 ]
Strittmatter, Laura [1 ,2 ,3 ,4 ]
Goldberger, Olga [1 ,2 ,3 ,4 ]
Bogorad, Roman L. [5 ]
Koteliansky, Victor [6 ]
Mootha, Vamsi K. [1 ,2 ,3 ,4 ]
机构
[1] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02114 USA
[2] Harvard Univ, Sch Med, Dept Med, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Boston, MA 02114 USA
[4] Broad Inst, Cambridge, MA 02142 USA
[5] MIT, Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[6] Alnylam Pharmaceut Inc, Cambridge, MA 02142 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
RAT KIDNEY MITOCHONDRIA; OXIDATIVE-PHOSPHORYLATION; RNAI THERAPEUTICS; PROTEIN TOPOLOGY; TRANSPORT; DELIVERY; RESPIRATION; INHIBITION; LIBRARY; COMPLEX;
D O I
10.1038/nature10234
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mitochondria from diverse organisms are capable of transporting large amounts of Ca(2+) via a ruthenium-red-sensitive, membrane-potential-dependent mechanism called the uniporter(1-4). Although the uniporter's biophysical properties have been studied extensively, its molecular composition remains elusive. We recently used comparative proteomics to identify MICU1 (also known as CBARA1), an EF-hand-containing protein that serves as a putative regulator of the uniporter(5). Here, we use whole-genome phylogenetic profiling, genome-wide RNA co-expression analysis and organelle-wide protein coexpression analysis to predict proteins functionally related to MICU1. All three methods converge on a novel predicted transmembrane protein, CCDC109A, that we now call 'mitochondrial calcium uniporter' (MCU). MCU forms oligomers in the mitochondrial inner membrane, physically interacts with MICU1, and resides within a large molecular weight complex. Silencing MCU in cultured cells or in vivo in mouse liver severely abrogates mitochondrial Ca(2+) uptake, whereas mitochondrial respiration and membrane potential remain fully intact. MCU has two predicted transmembrane helices, which are separated by a highly conserved linker facing the intermembrane space. Acidic residues in this linker are required for its full activity. However, an S259A point mutation retains function but confers resistance to Ru360, the most potent inhibitor of the uniporter. Our genomic, physiological, biochemical and pharmacological data firmly establish MCU as an essential component of the mitochondrial Ca(2+) uniporter.
引用
收藏
页码:341 / U111
页数:7
相关论文
共 28 条
  • [1] A combinatorial library of lipid-like materials for delivery of RNAi therapeutics
    Akinc, Akin
    Zumbuehl, Andreas
    Goldberg, Michael
    Leshchiner, Elizaveta S.
    Busini, Valentina
    Hossain, Naushad
    Bacallado, Sergio A.
    Nguyen, David N.
    Fuller, Jason
    Alvarez, Rene
    Borodovsky, Anna
    Borland, Todd
    Constien, Rainer
    de Fougerolles, Antonin
    Dorkin, J. Robert
    Jayaprakash, K. Narayanannair
    Jayaraman, Muthusamy
    John, Matthias
    Koteliansky, Victor
    Manoharan, Muthiah
    Nechev, Lubomir
    Qin, June
    Racie, Timothy
    Raitcheva, Denitza
    Rajeev, Kallanthottathil G.
    Sah, Dinah W. Y.
    Soutschek, Juergen
    Toudjarska, Ivanka
    Vornlocher, Hans-Peter
    Zimmermann, Tracy S.
    Langer, Robert
    Anderson, Daniel G.
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (05) : 561 - 569
  • [2] Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms
    Akinc, Akin
    Querbes, William
    De, Soma
    Qin, June
    Frank-Kamenetsky, Maria
    Jayaprakash, K. Narayanannair
    Jayaraman, Muthusamy
    Rajeev, Kallanthottathil G.
    Cantley, William L.
    Dorkin, J. Robert
    Butler, James S.
    Qin, LiuLiang
    Racie, Timothy
    Sprague, Andrew
    Fava, Eugenio
    Zeigerer, Anja
    Hope, Michael J.
    Zerial, Marino
    Sah, Dinah W. Y.
    Fitzgerald, Kevin
    Tracy, Mark A.
    Manoharan, Muthiah
    Koteliansky, Victor
    de Fougerolles, Antonin
    Maier, Martin A.
    [J]. MOLECULAR THERAPY, 2010, 18 (07) : 1357 - 1364
  • [3] Mitochondrial transport of cations: Channels, exchangers, and permeability transition
    Bernardi, P
    [J]. PHYSIOLOGICAL REVIEWS, 1999, 79 (04) : 1127 - 1155
  • [4] TOPCONS: consensus prediction of membrane protein topology
    Bernsel, Andreas
    Viklund, Hakan
    Hennerdal, Aron
    Elofsson, Arne
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : W465 - W468
  • [5] SURVEY OF INTERACTION OF CALCIUM IONS WITH MITOCHONDRIA FROM DIFFERENT TISSUES AND SPECIES
    CARAFOLI, E
    LEHNINGE.AL
    [J]. BIOCHEMICAL JOURNAL, 1971, 122 (05) : 681 - &
  • [6] CHANCE B, 1955, J BIOL CHEM, V217, P383
  • [7] Computational method to predict mitochondrially imported proteins and their targeting sequences
    Claros, MG
    Vincens, P
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 241 (03): : 779 - 786
  • [8] CALCIUM UPTAKE BY RAT KIDNEY MITOCHONDRIA
    DELUCA, HF
    ENGSTROM, GW
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1961, 47 (11) : 1744 - &
  • [9] DENTON R M, 1980, Biochemical Society Transactions, V8, P266
  • [10] Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis
    Gohil, Vishal M.
    Sheth, Sunil A.
    Nilsson, Roland
    Wojtovich, Andrew P.
    Lee, Jeong Hyun
    Perocchi, Fabiana
    Chen, William
    Clish, Clary B.
    Ayata, Cenk
    Brookes, Paul S.
    Mootha, Vamsi K.
    [J]. NATURE BIOTECHNOLOGY, 2010, 28 (03) : 249 - U100