Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis

被引:154
作者
Tasset, Celine [1 ]
Bernoux, Maud [1 ]
Jauneau, Alain [2 ]
Pouzet, Cecile [2 ]
Briere, Christian [3 ]
Kieffer-Jacquinod, Sylvie [4 ]
Rivas, Susana [1 ]
Marco, Yves [1 ]
Deslandes, Laurent [1 ]
机构
[1] INRA, CNRS, LIPM, UMR 2594 441, F-31326 Castanet Tolosan, France
[2] Inst Federatif Rech 40, Castanet Tolosan, France
[3] Univ Toulouse 3, CNRS, UMR 5546, Castanet Tolosan, France
[4] CEA, DSV IRTSV Lab EdyP, Grenoble, France
来源
PLOS PATHOGENS | 2010年 / 6卷 / 11期
关键词
PATTERN-RECOGNITION RECEPTORS; PROTEIN-TYROSINE-PHOSPHATASE; III SECRETION SYSTEM; FOR-GENE SPECIFICITY; DISEASE-RESISTANCE; INNATE IMMUNITY; PLANT IMMUNITY; DEFENSE RESPONSES; CYSTEINE PROTEASE; MOLECULAR-BASIS;
D O I
10.1371/journal.ppat.1001202
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.
引用
收藏
页数:14
相关论文
共 67 条
[1]   Bacterial elicitation and evasion of plant innate immunity [J].
Abramovitch, Robert B. ;
Anderson, Jeffrey C. ;
Martin, Gregory B. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (08) :601-611
[2]   Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease [J].
Ade, Jules ;
DeYoung, Brody J. ;
Golstein, Catherine ;
Innes, Roger W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2531-2536
[3]   Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease [J].
Axtell, MJ ;
Chisholm, ST ;
Dahlbeck, D ;
Staskawicz, BJ .
MOLECULAR MICROBIOLOGY, 2003, 49 (06) :1537-1546
[4]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[5]   RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector [J].
Bernoux, Maud ;
Timmers, Ton ;
Jauneau, Alain ;
Briere, Christian ;
de Wit, Pierre J. G. M. ;
Marco, Yves ;
Deslandes, Laurent .
PLANT CELL, 2008, 20 (08) :2252-2264
[6]   Phytopathogen type III effector weaponry and their plant targets [J].
Block, Anna ;
Li, Guangyong ;
Fu, Zheng Qing ;
Alfano, James R. .
CURRENT OPINION IN PLANT BIOLOGY, 2008, 11 (04) :396-403
[7]   Innate Immunity in Plants: An Arms Race Between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens [J].
Boller, Thomas ;
He, Sheng Yang .
SCIENCE, 2009, 324 (5928) :742-744
[8]   A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors [J].
Boller, Thomas ;
Felix, Georg .
ANNUAL REVIEW OF PLANT BIOLOGY, 2009, 60 :379-406
[9]   A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection [J].
Bretz, JR ;
Mock, NM ;
Charity, JC ;
Zeyad, S ;
Baker, CJ ;
Hutcheson, SW .
MOLECULAR MICROBIOLOGY, 2003, 49 (02) :389-400
[10]   Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation [J].
Brooks, CL ;
Gu, W .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :164-171