Alzheimer's disease-affected brain:: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss

被引:892
作者
Gong, YS
Chang, L
Viola, KL
Lacor, PN
Lambert, MP
Finch, CE
Krafft, GA
Klein, WL
机构
[1] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA
[2] Univ So Calif, Andrus Gerontol Ctr, Los Angeles, CA 90089 USA
[3] Acumen Pharmaceut, Glenview, IL 60025 USA
关键词
D O I
10.1073/pnas.1834302100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A molecular basis for memory failure in Alzheimer's disease (AD) has been recently hypothesized, in which a significant role is attributed to small, soluble oligomers of amyloid beta-peptide (Abeta). Abeta oligomeric ligands (also known as ADDLs) are known to be potent inhibitors of hippocampal long-term potentiation, which is a paradigm for synaptic plasticity, and have been linked to synapse loss and reversible memory failure in transgenic mouse AD models. If such oligomers were to build up in human brain, their neurological impact could provide the missing link that accounts for the poor correlation between AD dementia and amyloid plaques. This article, using antibodies raised against synthetic Abeta oligomers, verifies the predicted accumulation of soluble oligomers in AD frontal cortex. Oligomers in AD reach levels up to 70-fold over control brains. Brain-derived and synthetic oligomers show structural equivalence with respect to mass, isoelectric point, and recognition by conformation-sensitive antibodies. Both oligomers, moreover, exhibit the same striking patterns of attachment to cultured hippocampal neurons, binding on dendrite surfaces in small clusters with ligand-like specificity. Binding assays using solubilized membranes show oligomers to be high-affinity ligands for a small number of nonabundant proteins. Current results confirm the prediction that soluble oligomeric Abeta ligands are intrinsic to AD pathology, and validate their use in new approaches to therapeutic AD drugs and vaccines.
引用
收藏
页码:10417 / 10422
页数:6
相关论文
共 53 条
[1]   Pathway complexity of prion protein assembly into amyloid [J].
Baskakov, IV ;
Legname, G ;
Baldwin, MA ;
Prusiner, SB ;
Cohen, FE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (24) :21140-21148
[2]   Set back to Alzheimer vaccine studies [J].
Birmingham, K ;
Frantz, S .
NATURE MEDICINE, 2002, 8 (03) :199-200
[3]   The small leucine-rich repeat proteoglycan biglycan binds to α-dystroglycan and is upregulated in dystrophic muscle [J].
Bowe, MA ;
Mendis, DB ;
Fallon, JR .
JOURNAL OF CELL BIOLOGY, 2000, 148 (04) :801-810
[4]   OPTIMIZED SURVIVAL OF HIPPOCAMPAL-NEURONS IN B27-SUPPLEMENTED NEUROBASAL(TM), A NEW SERUM-FREE MEDIUM COMBINATION [J].
BREWER, GJ ;
TORRICELLI, JR ;
EVEGE, EK ;
PRICE, PJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1993, 35 (05) :567-576
[5]   Membrane lipid rafts are necessary for the maintenance of the α7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons [J].
Brusés, JL ;
Chauvet, N ;
Rutishauser, U .
JOURNAL OF NEUROSCIENCE, 2001, 21 (02) :504-512
[6]   Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases [J].
Bucciantini, M ;
Giannoni, E ;
Chiti, F ;
Baroni, F ;
Formigli, L ;
Zurdo, JS ;
Taddei, N ;
Ramponi, G ;
Dobson, CM ;
Stefani, M .
NATURE, 2002, 416 (6880) :507-511
[7]  
CHANG L, 2003, IN PRESS J MOL NEURO
[8]   Identification of osteopontin as a novel ligand for the integrin α8β1 and potential roles for this integrin-ligand interaction in kidney morphogenesis [J].
Denda, S ;
Reichardt, LF ;
Müller, U .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (06) :1425-1435
[9]   Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model [J].
Dodart, JC ;
Bales, KR ;
Gannon, KS ;
Greene, SJ ;
DeMattos, RB ;
Mathis, C ;
DeLong, CA ;
Wu, S ;
Wu, X ;
Holtzman, DM ;
Paul, SM .
NATURE NEUROSCIENCE, 2002, 5 (05) :452-457
[10]   Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts [J].
Ehehalt, R ;
Keller, P ;
Haass, C ;
Thiele, C ;
Simons, K .
JOURNAL OF CELL BIOLOGY, 2003, 160 (01) :113-123