Nonspinning black holes in alternative theories of gravity

被引:199
作者
Yunes, Nicolas [1 ]
Stein, Leo C.
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 10期
关键词
CURVATURE STRING GRAVITY; HAIR;
D O I
10.1103/PhysRevD.83.104002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study two large classes of alternative theories, modifying the action through algebraic, quadratic curvature invariants coupled to scalar fields. We find one class that admits solutions that solve the vacuum Einstein equations and another that does not. In the latter, we find a deformation to the Schwarzschild metric that solves the modified field equations in the small-coupling approximation. We calculate the event horizon shift, the innermost stable circular orbit shift, and corrections to gravitational waves, mapping them to the parametrized post-Einsteinian framework.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Chern-Simons modified general relativity [J].
Alexander, Stephon ;
Yunes, Nicolas .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 480 (1-2) :1-55
[2]   Gravitational-wave probe of effective quantum gravity [J].
Alexander, Stephon ;
Finn, Lee Samuel ;
Yunes, Nicolas .
PHYSICAL REVIEW D, 2008, 78 (06)
[3]   Probing the f(R) formalism through gravitational wave polarizations [J].
Alves, M. E. S. ;
Miranda, O. D. ;
de Araujo, J. C. N. .
PHYSICS LETTERS B, 2009, 679 (04) :401-406
[4]  
[Anonymous], 1987, CAMBRIDGE MONOGRAPHS
[5]  
[Anonymous], UNPUB
[6]   Bounding the mass of the graviton with gravitational waves: effect of higher harmonics in gravitational waveform templates [J].
Arun, K. G. ;
Will, Clifford M. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (15)
[7]   Estimating spinning binary parameters and testing alternative theories of gravity with LISA [J].
Berti, E ;
Buonanno, A ;
Will, CM .
PHYSICAL REVIEW D, 2005, 71 (08) :1-24
[8]   STRING-GENERATED GRAVITY MODELS [J].
BOULWARE, DG ;
DESER, S .
PHYSICAL REVIEW LETTERS, 1985, 55 (24) :2656-2660
[9]  
Burgess C. P., 2004, LIVING REV RELATIV, V7, P5, DOI [DOI 10.12942/LRR-2004-5, 10.12942/lrr-2004-5]
[10]   PERTURBATIVE METHOD TO SOLVE 4TH-ORDER GRAVITY-FIELD EQUATIONS [J].
CAMPANELLI, M ;
LOUSTO, CO ;
AUDRETSCH, J .
PHYSICAL REVIEW D, 1994, 49 (10) :5188-5193