Crystal structure of the SMC head domain:: An ABC ATPase with 900 residues antiparallel coiled-coil inserted

被引:129
作者
Löwe, J [1 ]
Cordell, SC [1 ]
van den Ent, F [1 ]
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
关键词
chromosome segregation; structural maintenance of chromosomes; MukB; SMC; Rad50;
D O I
10.1006/jmbi.2000.4379
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SMC (structural maintenance of chromosomes) proteins are large coiled-coil proteins involved in chromosome condensation, sister chromatid cohesion, and DNA double-strand break processing. They share a conserved five-domain architecture with three globular domains separated by two long coiled-coil segments. The coiled-coil segments are antiparallel, bringing the N and C-terminal globular domains together. We have expressed a fusion protein of the N and C-terminal globular domains of Thermotoga maritima SMC in Escherichia coli by replacing the approximately 900 residue coiled-coil and hinge segment with a short peptide linker. The SMC head domain (SMChd) binds and condenses DNA in an ATP-dependent manner. Using selenomethionine-substituted protein and multiple anomalous dispersion phasing, we have solved the crystal structure of the SMChd to 3.1 Angstrom resolution. In the monoclinic crystal form, six SMChd molecules form two turns of a helix. The fold of SMChd is closely related to the ATP-binding cassette (ABC) ATPase family of proteins and Rad50, a member of the SMC family involved in DNA double-strand break repair. In SMChd, the ABC ATPase fold is formed by the N and C-terminal domains with the 900 residue coiled-coil and hinge segment inserted in the middle of the fold. The crystal structure of an SMChd confirms that the coiled-coil segments in SMC proteins are antiparallel and shows how the N and C-terminal domains come together to form an ABC ATPase. Comparison to the structure of the MukB N-terminal domain demonstrates the close relationship between MukB and SMC proteins, and indicates a helix to strand conversion when N and C-terminal parts come together. (C) 2001 Academic Press.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 39 条
[1]   Mammalian SMC3 C-terminal and coiled-coil protein domains specifically bind palindromic DNA, do not block DNA ends, and prevent DNA bending [J].
Akhmedov, AT ;
Gross, B ;
Jessberger, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (53) :38216-38224
[2]   Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure [J].
Akhmedov, AT ;
Frei, C ;
Tsai-Pflugfelder, M ;
Kemper, B ;
Gasser, SM ;
Jessberger, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (37) :24088-24094
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   ALSCRIPT - A TOOL TO FORMAT MULTIPLE SEQUENCE ALIGNMENTS [J].
BARTON, GJ .
PROTEIN ENGINEERING, 1993, 6 (01) :37-40
[5]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[6]   SMCs in the world of chromosome biology - From prokaryotes to higher eukaryotes [J].
Cobbe, N ;
Heck, MMS .
JOURNAL OF STRUCTURAL BIOLOGY, 2000, 129 (2-3) :123-143
[7]   The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA [J].
Connelly, JC ;
Kirkham, LA ;
Leach, DRF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (14) :7969-7974
[8]   ACCURATE BOND AND ANGLE PARAMETERS FOR X-RAY PROTEIN-STRUCTURE REFINEMENT [J].
ENGH, RA ;
HUBER, R .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :392-400
[9]   Overexpression of bamacan/SMC3 causes transformation [J].
Ghiselli, G ;
Iozzo, RV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (27) :20235-20238
[10]   The many interfaces of Mre11 [J].
Haber, JE .
CELL, 1998, 95 (05) :583-586