Structural Disorder in Doped Zirconias, Part II: Vacancy Ordering Effects and the Conductivity Maximum.

被引:66
作者
Marrocchelli, Dario [1 ]
Madden, Paul A. [2 ]
Norberg, Stefan T. [3 ,4 ]
Hull, Stephen [4 ]
机构
[1] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[3] Chalmers, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden
[4] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England
基金
瑞典研究理事会; 英国工程与自然科学研究理事会;
关键词
ionic conductors; theory and modeling; inorganic solids and ceramics; solid oxide fuel cells; YTTRIA-STABILIZED ZIRCONIA; MOLECULAR-DYNAMICS; OXYGEN DIFFUSION; IONIC-CONDUCTIVITY; COMPUTER-SIMULATION; 0-LESS-THAN-OR-EQUAL-TO-X-LESS-THAN-OR-EQUAL-TO-1; SYSTEM; OXIDE; CONSTRUCTION; MECHANISM; TRANSPORT;
D O I
10.1021/cm102809t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polarizable interaction potentials, parametrized using ab initio electronic structure calculations, have been used in molecular dynamics simulations to study the conduction mechanism in doped zirconias. The influence of vacancy-vacancy and vacancy-cation interactions on the conductivity of these materials has been characterized. Although the latter can be minimized by using dopant Cations with radii which match those of Zr(4+) (as in the case of Sc(3+)), the former appears as an intrinsic characteristic of the fluorite lattice that cannot be avoided and that is shown to be responsible for the occurrence of a maximum in the conductivity at dopant concentrations between 8 and 13%. The weakness of the Sc-vacancy interactions in Sc(2)O(3)-dope zirconia confirms that this material is likely to present the highest conductivity achievable in zirconias.
引用
收藏
页码:1365 / 1373
页数:9
相关论文
共 40 条
[1]   Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system [J].
Arachi, Y ;
Sakai, H ;
Yamamoto, O ;
Takeda, Y ;
Imanishai, N .
SOLID STATE IONICS, 1999, 121 (1-4) :133-139
[2]   Nature and strength of defect interactions in cubic stabilized zirconia [J].
Bogicevic, A ;
Wolverton, C .
PHYSICAL REVIEW B, 2003, 67 (02)
[3]   Ion mobility in α-PbF2:: a computer simulation study [J].
Castiglione, MJ ;
Wilson, M ;
Madden, PA ;
Grey, CP .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (01) :51-66
[4]   Computer simulation of defects and oxygen transport in yttria-stabilized zirconia [J].
Devanathan, R. ;
Weber, W. J. ;
Singhal, S. C. ;
Gale, J. D. .
SOLID STATE IONICS, 2006, 177 (15-16) :1251-1258
[5]   Defect interactions and ionic transport in scandia stabilized zirconia [J].
Devanathan, R. ;
Thevuthasan, S. ;
Gale, J. D. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (26) :5506-5511
[6]   Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures [J].
Garcia-Barriocanal, J. ;
Rivera-Calzada, A. ;
Varela, M. ;
Sefrioui, Z. ;
Iborra, E. ;
Leon, C. ;
Pennycook, S. J. ;
Santamaria, J. .
SCIENCE, 2008, 321 (5889) :676-680
[7]   Modulated fluorite-type structure of materials from the (1-x)Y0.5Zr0.5O1.75-xY0.75Nb0.25O1.75 (0≤x≤1) system [J].
García-Martín, S ;
Alario-Franco, MA ;
Fagg, DP ;
Feighery, AJ ;
Irvine, JTS .
CHEMISTRY OF MATERIALS, 2000, 12 (06) :1729-1737
[8]   Evidence of three types of short range ordered fluorite structure in the (1-x) Y0.15Zr0.85O1.93-x Y0.75Nb0.25O1.75 (0≤x≤1) system [J].
García-Martín, S ;
Alario-Franco, MA ;
Fagg, DP ;
Irvine, JTS .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (19) :1903-1907
[9]   Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures [J].
Goff, JP ;
Hayes, W ;
Hull, S ;
Hutchings, MT ;
Clausen, KN .
PHYSICAL REVIEW B, 1999, 59 (22) :14202-14219
[10]   Superionics: crystal structures and conduction processes [J].
Hull, S .
REPORTS ON PROGRESS IN PHYSICS, 2004, 67 (07) :1233-1314