A new mechanism of slip weakening and strength recovery of friction associated with the mechanical consolidation of gouge

被引:36
作者
Nakatani, M [1 ]
机构
[1] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
关键词
D O I
10.1029/98JB02639
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
I present results of a series of slide-hold-slide tests on granite surfaces separated by a layer of simulated granite gouge. The shear stress during the hold period (tau(hold)) was controlled and used as a major control parameter of the experiments in addition to the time of hold. Time-dependent fault healing, which has been observed in many previous similar experiments, was observed only at very high tau(hold), above 90% of the sliding friction. A time-independent strengthening termed "consolidation strengthening" occurred at all tau(hold). With a magnitude proportional to the reduction of tau(hold). The magnitude of this strengthening was as large as 25% of the residual friction. The consolidation strengthening was found to be erased by subsequent slip in quite a different manner than is time-dependent healing. The friction decreased linearly with slip displacement at a rate independent of the magnitude of the strengthening and hence larger slip displacement is required to erase larger consolidation strengthening. On the basis of these results together with earlier authors' results of the measurements of porosity change under similar conditions, I conclude that the time-independent strengthening is due to the occurrence of gouge particle rearrangement to tighter packing enabled by decreased shear stress (under a constant normal stress) and that the subsequent slip weakening is due to unconsolidation of gouge enabled by particle rearrangement (dilatancy) during shearing. The rate- and state-dependent friction (RSF) law was extended to incorporate the present findings.
引用
收藏
页码:27239 / 27256
页数:18
相关论文
共 42 条
[1]  
[Anonymous], 1977, ROCK MECH
[2]   The roles of time and displacement in velocity-dependent volumetric strain of fault zones [J].
Beeler, NM ;
Tullis, TE .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B10) :22595-22609
[3]   THE ROLES OF TIME AND DISPLACEMENT IN THE EVOLUTION EFFECT IN ROCK FRICTION [J].
BEELER, NM ;
TULLIS, TE ;
WEEKS, JD .
GEOPHYSICAL RESEARCH LETTERS, 1994, 21 (18) :1987-1990
[4]   Frictional behavior of large displacement experimental faults [J].
Beeler, NM ;
Tullis, TE ;
Blanpied, ML ;
Weeks, JD .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1996, 101 (B4) :8697-8715
[5]   MULTIMECHANISM FRICTION CONSTITUTIVE MODEL FOR ULTRAFINE QUARTZ GOUGE AT HYPOCENTRAL CONDITIONS [J].
CHESTER, FM ;
HIGGS, NG .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1992, 97 (B2) :1859-1870
[6]  
Dieterich J. H., 1981, Mechanical behavior of crustal rocks, P103, DOI [10.1029/GM024p0103, DOI 10.1029/GM024P0103]
[7]   EFFECT OF HUMIDITY ON TIME-DEPENDENT AND VELOCITY-DEPENDENT FRICTION IN ROCKS [J].
DIETERICH, JH ;
CONRAD, G .
JOURNAL OF GEOPHYSICAL RESEARCH, 1984, 89 (NB6) :4196-4202
[8]   MODELING OF ROCK FRICTION .1. EXPERIMENTAL RESULTS AND CONSTITUTIVE EQUATIONS [J].
DIETERICH, JH .
JOURNAL OF GEOPHYSICAL RESEARCH, 1979, 84 (NB5) :2161-2168
[9]   TIME-DEPENDENT FRICTION AND MECHANICS OF STICK-SLIP [J].
DIETERICH, JH .
PURE AND APPLIED GEOPHYSICS, 1978, 116 (4-5) :790-806
[10]   DIRECT OBSERVATION OF FRICTIONAL CONTACTS - NEW INSIGHTS FOR STATE-DEPENDENT PROPERTIES [J].
DIETERICH, JH ;
KILGORE, BD .
PURE AND APPLIED GEOPHYSICS, 1994, 143 (1-3) :283-302