Inverted catenoid as a fluid membrane with two points pulled together

被引:17
作者
Castro-Villarreal, Pavel [1 ]
Guven, Jemal [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 01期
关键词
D O I
10.1103/PhysRevE.76.011922
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Under inversion in any (interior) point, a catenoid transforms into a deflated compact geometry which touches at two points (its poles). The catenoid is a minimal surface and, as such, is an equilibrium shape of a symmetric fluid membrane. The conformal symmetry of the Hamiltonian implies that inverted minimal surfaces are also equilibrium shapes. However, they will exhibit curvature singularities at their poles. Such singularities are the geometrical signature of the external forces required to pull the poles together. These forces will set up stresses in the inverted shapes. Tuning the force corresponds geometrically to the translation of the point of inversion. For any fixed surface area, there will be a maximum force. The associated shape is a symmetric discocyte. Lowering the external force will induce a transition from the discocyte to a cup-shaped stomatocyte.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Theoretical analysis of the formation of membrane microtubes on axially strained vesicles [J].
Bozic, B ;
Svetina, S ;
Zeks, B .
PHYSICAL REVIEW E, 1997, 55 (05) :5834-5842
[2]  
CANHAM PB, 1973, Z NATURFORSCH C, V28, P693
[3]   Deformations of the geometry of lipid vesicles [J].
Capovilla, R ;
Guven, J ;
Santiago, JA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (23) :6281-6295
[4]   Stresses in lipid membranes [J].
Capovilla, R ;
Guven, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (30) :6233-6247
[5]   Axially symmetric membranes with polar tethers [J].
Castro-Villarreal, Pavel ;
Guven, Jemal .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (16) :4273-4283
[6]   Formation and interaction of membrane tubes -: art. no. 238101 [J].
Derényi, I ;
Jülicher, F ;
Prost, J .
PHYSICAL REVIEW LETTERS, 2002, 88 (23) :4
[7]   CURVATURE ELASTICITY OF FLUID MEMBRANES - CATALOG OF VESICLE SHAPES [J].
DEULING, HJ ;
HELFRICH, W .
JOURNAL DE PHYSIQUE, 1976, 37 (11) :1335-1345
[8]  
do Carmo P., 1976, Differential Geometry of Curves and Surfaces
[9]  
Gray A., 2006, Modern Differential Geometry of Curves and Surfaces With Mathematica
[10]   Laplace pressure as a surface stress in fluid vesicles [J].
Guven, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14) :3771-3785