Inhibition of mutation and combating the evolution of antibiotic resistance

被引:404
作者
Cirz, RT
Chin, JK
Andes, DR
de Crécy-Lagard, V
Craig, WA
Romesberg, FE [1 ]
机构
[1] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[2] Univ Wisconsin, Sch Med, Dept Med, Infect Dis Sect, Madison, WI USA
关键词
D O I
10.1371/journal.pbio.0030176
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The emergence of drug-resistant bacteria poses a serious threat to human health. In the case of several antibiotics, including those of the quinolone and rifamycin classes, bacteria rapidly acquire resistance through mutation of chromosomal genes during therapy. In this work, we show that preventing induction of the SOS response by interfering with the activity of the protease LexA renders pathogenic Escherichia coli unable to evolve resistance in vivo to ciprofloxacin or rifampicin, important quinolone and rifamycin antibiotics. We show in vitro that LexA cleavage is induced during RecBC-mediated repair of ciprofloxacin-mediated DNA damage and that this results in the derepression of the SOS-regulated polymerases Pol II, Pol IV and Pol V, which collaborate to induce resistance-conferring mutations. Our findings indicate that the inhibition of mutation could serve as a novel therapeutic strategy to combat the evolution of antibiotic resistance.
引用
收藏
页码:1024 / 1033
页数:10
相关论文
共 75 条
[1]   The RecD subunit of the Escherichia coli RecBCD enzyme inhibits RecA loading, homologous recombination, and DNA repair [J].
Amundsen, SK ;
Taylor, AF ;
Smith, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (13) :7399-7404
[2]   In vivo activities of amoxicillin and amoxicillin-clavulanate against Streptococcus pneumoniae:: Application to breakpoint determinations [J].
Andes, D ;
Craig, WA .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1998, 42 (09) :2375-2379
[3]  
[Anonymous], 2010, Antibiotic and chemotherapy e-book
[4]  
AVORN JL, 2001, WHO ALLIANCE PRUDENT
[5]   DNA polymerase II (polB) is involved in a new DNA repair pathway for DNA interstrand cross-links in Escherichia coli [J].
Berardini, M ;
Foster, PL ;
Loechler, EL .
JOURNAL OF BACTERIOLOGY, 1999, 181 (09) :2878-2882
[6]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[7]   Mutation in Escherichia coli under starvation conditions: A new pathway leading to small deletions in strains defective in mismatch correction [J].
Bridges, BA ;
Timms, AR .
EMBO JOURNAL, 1997, 16 (11) :3349-3356
[8]   ROLE OF RECA PROTEIN IN UNTARGETED UV MUTAGENESIS OF BACTERIOPHAGE-LAMBDA - EVIDENCE FOR THE REQUIREMENT FOR THE DINB GENE [J].
BROTCORNELANNOYE, A ;
MAENHAUTMICHEL, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (11) :3904-3908
[9]   Stationary-phase mutation in the bacterial chromosome: Recombination protein and DNA polymerase IV dependence [J].
Bull, HJ ;
Lombardo, MJ ;
Rosenberg, SM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (15) :8334-8341
[10]   DNA gyrase and topoisomerase IV on the bacterial chromosome: Quinolone-induced DNA cleavage [J].
Chen, CR ;
Malik, M ;
Snyder, M ;
Drlica, K .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 258 (04) :627-637