Identification of class B and class C floral organ identity genes from rice plants

被引:266
作者
Kang, HG [1 ]
Jeon, JS [1 ]
Lee, S [1 ]
An, GH [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Life Sci, Pohang 790784, South Korea
关键词
ABC model; antisense; flower development; MADS box; rice; transgenic plant;
D O I
10.1023/A:1006051911291
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The functions of two rice MADS-box genes were studied by the loss-of-function approach. The first gene, OsMADS4, shows a significant homology to members in the PISTILLATA (PI) family, which is required to specify petal and stamen identity. The second gene, OsMADS3, is highly homologous to the members in the AGAMOUS (AG) family that is essential for the normal development of the internal two whorls, the stamen and carpel, of the flower. These two rice MADS box cDNA clones were connected to the maize ubiquitin promoter in an antisense orientation and the fusion molecules were introduced to rice plants by the Agrobacterium-mediated transformation method. Transgenic plants expressing antisense OsMADS4 displayed alterations of the second and third whorls. The second-whorl lodicules, which are equivalent to the petals of dicot plants in grasses, were altered into palea/lemma-like organs, and the third whorl stamens were changed to carpel-like organs. Loss-of-function analysis of OsMADS3 showed alterations in the third and fourth whorls. In the third whorl, the filaments of the transgenic plants were changed into thick and fleshy bodies, similar to lodicules. Rather than making a carpel, the fourth whorl produced several abnormal flowers. These phenotypes are similar to those of the agamous and plena mutants in Arabidopsis and Antirrhinum, respectively. These results suggest that OsMADS4 belongs to the class B gene family and OsMADS3 belongs to the class C gene family of floral organ identity determination.
引用
收藏
页码:1021 / 1029
页数:9
相关论文
共 41 条
[1]  
An G., 1988, Binary Vectors, Plant Molecular Biology Manual
[2]   FUNCTIONAL INTERACTION BETWEEN THE HOMEOTIC GENES FBP1 AND PMADS1 DURING PETUNIA FLORAL ORGANOGENESIS [J].
ANGENENT, GC ;
BUSSCHER, M ;
FRANKEN, J ;
DONS, HJM ;
VANTUNEN, AJ .
PLANT CELL, 1995, 7 (05) :507-516
[3]   PETAL AND STAMEN FORMATION IN PETUNIA IS REGULATED BY THE HOMEOTIC GENE-FBP1 [J].
ANGENENT, GC ;
FRANKEN, J ;
BUSSCHER, M ;
COLOMBO, L ;
VANTUNEN, AJ .
PLANT JOURNAL, 1993, 4 (01) :101-112
[4]   COMPLEMENTARY FLORAL HOMEOTIC PHENOTYPES RESULT FROM OPPOSITE ORIENTATIONS OF A TRANSPOSON AT THE PLENA-LOCUS OF ANTIRRHINUM [J].
BRADLEY, D ;
CARPENTER, R ;
SOMMER, H ;
HARTLEY, N ;
COEN, E .
CELL, 1993, 72 (01) :85-95
[5]   MAIZE POLYUBIQUITIN GENES - STRUCTURE, THERMAL PERTURBATION OF EXPRESSION AND TRANSCRIPT SPLICING, AND PROMOTER ACTIVITY FOLLOWING TRANSFER TO PROTOPLASTS BY ELECTROPORATION [J].
CHRISTENSEN, AH ;
SHARROCK, RA ;
QUAIL, PH .
PLANT MOLECULAR BIOLOGY, 1992, 18 (04) :675-689
[6]   EARLY FLOWERING AND REDUCED APICAL DOMINANCE RESULT FROM ECTOPIC EXPRESSION OF A RICE MADS BOX GENE [J].
CHUNG, YY ;
KIM, SR ;
FINKEL, D ;
YANOFSKY, MF ;
AN, GH .
PLANT MOLECULAR BIOLOGY, 1994, 26 (02) :657-665
[7]   CHARACTERIZATION OF 2 RICE MADS BOX GENES HOMOLOGOUS TO GLOBOSA [J].
CHUNG, YY ;
KIM, SR ;
KANG, HG ;
NOH, YS ;
PARK, MC ;
FINKEL, D ;
AN, GH .
PLANT SCIENCE, 1995, 109 (01) :45-56
[8]  
CHURCH GM, 1984, P NATL ACAD SCI USA, V81, P1191
[9]   THE ROLE OF HOMEOTIC GENES IN FLOWER DEVELOPMENT AND EVOLUTION [J].
COEN, ES .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1991, 42 :241-279
[10]   Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes [J].
Davies, B ;
DiRosa, A ;
Eneva, T ;
Saedler, H ;
Sommer, H .
PLANT JOURNAL, 1996, 10 (04) :663-677