Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine

被引:167
作者
Tang, W [1 ]
Newton, RJ [1 ]
机构
[1] E Carolina Univ, Dept Biol, Greenville, NC 27858 USA
关键词
oxidative damage; Pinus virginiana Mill; putrescine; spermidine; spermine;
D O I
10.1007/s10725-005-6395-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Polyamines play an important role in the plant response to adverse environmental conditions including salt and osmotic stresses. In this investigation, the responses of polyamines to salt-induced oxidative stress were studied in callus cultures and plantlets in Virginia pine (Pinus virginiana Mill.). Our results demonstrated that polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation. Among different polyamines used in this study, putrescine (Put) is more effective in increasing the activities of ascorbate peroxidase (APOX), glutathione reductase (GR), and superoxide dismutase (SOD), reducing the activities of acid phosphatase and V-type H+-ATPase, and decreasing lipid peroxidation in Virginia pine, compared to both spermidine (Spd) and spermine (Spm). When 2.1 mM Put, Spd, and Spm were separately added to the medium, higher diamine oxidase (DAO) and polyamine oxidase (PAO) activities were observed in callus cultures and plantlets, compared to the concentrations of 0.7 and 1.4 mM. The activities of these two enzymes produce hydrogen peroxide (H2O2), which may act in structural defense as a signal molecule and decreasing the protection of polyamines against salt-induced oxidative damage in Virginia pine.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 52 条
[1]   DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS [J].
ALLEN, RD .
PLANT PHYSIOLOGY, 1995, 107 (04) :1049-1054
[2]   POLYAMINE METABOLISM AND IN-VITRO CELL MULTIPLICATION AND DIFFERENTIATION IN LEAF EXPLANTS OF CHRYSANTHEMUM-MORIFOLIUM RAMAT [J].
ARIBAUD, M ;
CARRE, M ;
MARTINTANGUY, J .
PLANT GROWTH REGULATION, 1994, 15 (02) :143-155
[3]   Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride [J].
Aziz, A ;
Martin-Tanguy, J ;
Larher, F .
PHYSIOLOGIA PLANTARUM, 1998, 104 (02) :195-202
[4]   Plasticity of polyamine metabolism associated with high osmotic stress in rape leaf discs and with ethylene treatment [J].
Aziz, A ;
MartinTanguy, J ;
Larher, F .
PLANT GROWTH REGULATION, 1997, 21 (02) :153-163
[5]  
BAGNI N, 1991, BIOCH PHYSL POLYAMIN, P105
[6]  
BERGMEYER HU, 1974, METHOD ENZYMAT AN, V2, P1
[7]   ADAPTATIONS TO ENVIRONMENTAL STRESSES [J].
BOHNERT, HJ ;
NELSON, DE ;
JENSEN, RG .
PLANT CELL, 1995, 7 (07) :1099-1111
[8]   Polyamines inhibit lipid peroxidation in senescing oat leaves [J].
Borrell, A ;
Carbonell, L ;
Farras, R ;
PuigParellada, P ;
Tiburcio, AF .
PHYSIOLOGIA PLANTARUM, 1997, 99 (03) :385-390
[9]   Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings [J].
Borsani, O ;
Valpuesta, V ;
Botella, MA .
PLANT PHYSIOLOGY, 2001, 126 (03) :1024-1030
[10]   Polyamines and environmental challenges: recent development [J].
Bouchereau, A ;
Aziz, A ;
Larher, F ;
Martin-Tanguy, J .
PLANT SCIENCE, 1999, 140 (02) :103-125