AXR3 and SHY2 interact to regulate root hair development

被引:143
作者
Knox, K
Grierson, CS
Leyser, O
机构
[1] Univ York, Dept Biol, York YO10 5YW, N Yorkshire, England
[2] Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England
来源
DEVELOPMENT | 2003年 / 130卷 / 23期
基金
英国生物技术与生命科学研究理事会;
关键词
auxin; Aux/IAAs; root hairs; Arabidopsis thaliana;
D O I
10.1242/dev.00659
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Signal transduction of the plant hormone auxin centres on the regulation of the abundance of members of the Aux/IAA family of transcriptional regulators, of which there are 29 in Arabidopsis. Auxin can influence Aux/IAA abundance by promoting the transcription of Aux/IAA genes and by reducing the half-life of Aux/IAA proteins. Stabilising mutations, which render Aux/IAA proteins resistant to auxin-mediated degradation, confer a wide range of phenotypes consistent with disruptions in auxin response. Interestingly, similar mutations in different family members can confer opposite phenotypic effects. To understand the molecular basis for this functional specificity in the Aux/IAA family, we have studied a pair of Aux/IAAs, which have contrasting roles in root hair development. We have found that stabilising mutations in AXR3/IAA17 blocks root hair initiation and elongation, whereas similar mutations in SHY2/IAA3 result in early initiation of root hair development and prolonged hair elongation, giving longer root hairs. The phenotypes resulting from double mutant combinations, the transient induction of expression of the proteins, and the pattern of transcription of the cognate genes suggest that root hair initiation is controlled by the relative abundance of SHY2 and AXR3 in a cell. These results suggest a general model for auxin signalling in which the modulation of the relative abundance of different Aux/IAA proteins can determine which down-stream responses are induced.
引用
收藏
页码:5769 / 5777
页数:9
相关论文
共 38 条
[1]   THE PS-IAA4/5-LIKE FAMILY OF EARLY AUXIN-INDUCIBLE MESSENGER-RNAS IN ARABIDOPSIS-THALIANA [J].
ABEL, S ;
NGUYEN, MD ;
THEOLOGIS, A .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 251 (04) :533-549
[2]   EARLY AUXIN-INDUCED GENES ENCODE SHORT-LIVED NUCLEAR PROTEINS [J].
ABEL, S ;
OELLER, PW ;
THEOLOGIS, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (01) :326-330
[3]  
Almeida Engler J. de, 1994, Plant Molecular Biology Reporter, V12, P321, DOI 10.1007/BF02669275
[4]   Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability [J].
Bates, TR ;
Lynch, JP .
PLANT CELL AND ENVIRONMENT, 1996, 19 (05) :529-538
[5]   Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries [J].
Berger, F ;
Haseloff, J ;
Schiefelbein, J ;
Dolan, L .
CURRENT BIOLOGY, 1998, 8 (08) :421-430
[6]   The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation [J].
Blilou, I ;
Frugier, F ;
Folmer, S ;
Serralbo, O ;
Willemsen, V ;
Wolkenfelt, H ;
Eloy, NB ;
Ferreira, PCG ;
Weisbeek, P ;
Scheres, B .
GENES & DEVELOPMENT, 2002, 16 (19) :2566-2575
[7]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[8]   Aux/IAA proteins are phosphorylated by phytochrome in vitro [J].
Colón-Carmona, A ;
Chen, DL ;
Yeh, KC ;
Abel, S .
PLANT PHYSIOLOGY, 2000, 124 (04) :1728-1738
[9]  
DOLAN L, 1994, DEVELOPMENT, V120, P2465
[10]   THE TTG GENE IS REQUIRED TO SPECIFY EPIDERMAL-CELL FATE AND CELL PATTERNING IN THE ARABIDOPSIS ROOT [J].
GALWAY, ME ;
MASUCCI, JD ;
LLOYD, AM ;
WALBOT, V ;
DAVIS, RW ;
SCHIEFELBEIN, JW .
DEVELOPMENTAL BIOLOGY, 1994, 166 (02) :740-754