THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM

被引:326
作者
Dunkley, J. [1 ,2 ,3 ]
Hlozek, R. [1 ]
Sievers, J. [4 ]
Acquaviva, V. [3 ,5 ]
Ade, P. A. R. [6 ]
Aguirre, P. [7 ]
Amiri, M. [8 ]
Appel, J. W. [2 ]
Barrientos, L. F. [7 ]
Battistelli, E. S. [8 ,9 ]
Bond, J. R. [4 ]
Brown, B. [10 ]
Burger, B. [8 ]
Chervenak, J. [11 ]
Das, S. [2 ,3 ,12 ,13 ]
Devlin, M. J. [14 ]
Dicker, S. R. [14 ]
Doriese, W. Bertrand [15 ]
Duenner, R. [7 ]
Essinger-Hileman, T. [2 ]
Fisher, R. P. [2 ]
Fowler, J. W. [2 ,15 ]
Hajian, A. [2 ,3 ,4 ]
Halpern, M. [8 ]
Hasselfield, M. [8 ]
Hernandez-Monteagudo, C. [16 ]
Hilton, G. C. [15 ]
Hilton, M. [17 ,18 ]
Hincks, A. D. [2 ]
Huffenberger, K. M. [19 ]
Hughes, D. H. [20 ]
Hughes, J. P. [5 ]
Infante, L. [7 ]
Irwin, K. D. [15 ]
Juin, J. B. [7 ]
Kaul, M. [14 ]
Klein, J. [14 ]
Kosowsky, A. [10 ]
Lau, J. M. [2 ,21 ,22 ]
Limon, M. [2 ,14 ,23 ]
Lin, Y-T. [3 ,7 ,24 ]
Lupton, R. H. [3 ]
Marriage, T. A. [3 ,25 ]
Marsden, D. [14 ]
Mauskopf, P. [6 ]
Menanteau, F. [5 ]
Moodley, K. [17 ,18 ]
Moseley, H. [11 ]
Netterfield, C. B. [26 ]
Niemack, M. D. [2 ,15 ]
机构
[1] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England
[2] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[4] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada
[5] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[6] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales
[7] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile
[8] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada
[9] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
[10] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[11] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[12] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA
[13] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[14] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[15] NIST, Quantum Devices Grp, Boulder, CO 80305 USA
[16] Max Planck Inst Astrophys, D-85741 Garching, Germany
[17] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa
[18] Rosebank, Ctr High Performance Comp, Cape Town, South Africa
[19] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA
[20] INAOE, Puebla, Mexico
[21] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
[22] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[23] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA
[24] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan
[25] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[26] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[27] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA
[28] Univ Barcelona, ICC, E-08028 Barcelona, Spain
[29] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[30] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA
[31] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[32] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
基金
新加坡国家研究基金会; 美国国家科学基金会; 加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
cosmic background radiation; cosmological parameters; cosmology: observations; PROBE WMAP OBSERVATIONS; MICROWAVE BACKGROUND ANISOTROPIES; MASSIVE GALAXY CLUSTERS; PRIMORDIAL ABUNDANCE; HUBBLE CONSTANT; OBSERVED GROWTH; TEMPERATURE; RECOMBINATION; SIMULATIONS; CONSTRAINTS;
D O I
10.1088/0004-637X/739/1/52
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg(2) with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 < l < 10,000. We fit a model for the lensed CMB, Sunyaev-Zel'dovich (SZ), and foreground contribution to the 148 GHz and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. At l = 3000, about half the power at 148 GHz comes from primary CMB after masking bright radio sources. The power from thermal and kinetic SZ is estimated to be B-3000 = 6.8 +/- 2.9 mu K-2, where B-l = l (l + 1) C-l/2 pi. The IR Poisson power at 148 GHz is B-3000 = 7.8 +/- 0.7 mu K-2 (Cl = 5.5 +/- 0.5 nK(2)), and a clustered IR component is required with B-3000 = 4.6 +/- 0.9 mu K-2, assuming an analytic model for its power spectrum shape. At 218 GHz only about 15% of the power, approximately 27 mu K-2, is CMB anisotropy at l = 3000. The remaining 85% is attributed to IR sources (approximately 50% Poisson and 35% clustered), with spectral index alpha = 3.69 +/- 0.14 for flux scaling as S(v) proportional to v(alpha). We estimate primary cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The Lambda CDM cosmological model is a good fit to the data (chi(2)/dof = 29/46), and Lambda CDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant ns = 1 excluded at 99.7% confidence level (CL) (3 sigma). A model with no CMB lensing is disfavored at 2.8 sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6 sigma detection of primordial helium, with Y-P = 0.313 +/- 0.044, and a 4 sigma detection of relativistic species, assumed to be neutrinos, with N-eff = 5.3 +/- 1.3 (4.6 +/- 0.8 with BAO+H-0 data). From the CMB alone the running of the spectral index is constrained to be dn(s)/d ln k = - 0.034 +/- 0.018, the limit on the tensor-to-scalar ratio is r < 0.25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension G mu < 1.6 x 10(-7) ( 95% CL).
引用
收藏
页数:20
相关论文
共 139 条
  • [1] [Anonymous], 1980, The large-scale structure of the universe, DOI DOI 10.23943/PRINCETON/9780691209838.001.0001
  • [2] SPONTANEOUS CREATION OF ALMOST SCALE-FREE DENSITY PERTURBATIONS IN AN INFLATIONARY UNIVERSE
    BARDEEN, JM
    STEINHARDT, PJ
    TURNER, MS
    [J]. PHYSICAL REVIEW D, 1983, 28 (04): : 679 - 693
  • [3] Signatures of relativistic neutrinos in CMB anisotropy and matter clustering
    Bashinsky, S
    Seljak, U
    [J]. PHYSICAL REVIEW D, 2004, 69 (08): : 35
  • [4] SIMULATIONS OF THE SUNYAEV-ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK
    Battaglia, N.
    Bond, J. R.
    Pfrommer, C.
    Sievers, J. L.
    Sijacki, D.
    [J]. ASTROPHYSICAL JOURNAL, 2010, 725 (01) : 91 - 99
  • [5] Updated constraints on the cosmic string tension
    Battye, Richard
    Moss, Adam
    [J]. PHYSICAL REVIEW D, 2010, 82 (02):
  • [6] Tight constraints on F- and D-term hybrid inflation scenarios
    Battye, Richard
    Garbrecht, Bjoern
    Moss, Adam
    [J]. PHYSICAL REVIEW D, 2010, 81 (12):
  • [7] Constraints on supersymmetric hybrid inflation models
    Battye, Richard A.
    Garbrecht, Bjorn
    Moss, Adam
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2006, (09):
  • [8] Baumann D, 2009, AIP CONF PROC, V1141, P10, DOI 10.1063/1.3160885
  • [9] The Microwave Anisotropy Probe mission
    Bennett, CL
    Bay, M
    Halpern, M
    Hinshaw, G
    Jackson, C
    Jarosik, N
    Kogut, A
    Limon, M
    Meyer, SS
    Page, L
    Spergel, DN
    Tucker, GS
    Wilkinson, DT
    Wollack, E
    Wright, EL
    [J]. ASTROPHYSICAL JOURNAL, 2003, 583 (01) : 1 - 23
  • [10] HIGH-RESOLUTION SIMULATIONS OF COSMIC-STRING EVOLUTION .1. NETWORK EVOLUTION
    BENNETT, DP
    BOUCHET, FR
    [J]. PHYSICAL REVIEW D, 1990, 41 (08): : 2408 - 2433