Information transfer rate in a five-classes brain-computer interface

被引:225
作者
Obermaier, B [1 ]
Neuper, C
Guger, C
Pfurtscheller, G
机构
[1] Graz Univ Technol, Ludwig Boltzmann Inst Med Informat, A-8010 Graz, Austria
[2] G TDEC, A-8051 Graz, Austria
[3] Graz Univ Technol, Dept Med Informat, A-8010 Graz, Austria
关键词
brain-computer interface (BCI); electroencephalogram (EEG) classification; hidden Markov model; information transfer rate;
D O I
10.1109/7333.948456
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The information transfer rate, given in bits per trial, is used as an evaluation measurement in a brain-computer interface (BCI). Three subjects performed four motor-imagery (left hand, right hand, foot, and tongue.) and one mental-calculation task. Classification of the electroencephalogram (EEG) patterns is based on band power estimates and hidden Markov models (HMMs). We propose a method that combines the EEG patterns based on separability into subsets A two, three, four, and live mental tasks. The information transfer rates of the BCI systems comprised of these subsets are reported. The achieved information transfer rates vary from 0.42 to 0.81 bits per trial and reveal that the upper limit of different mental tasks for a BCI system is three. In each subject, different combinations of three tasks resulted in the best performance.
引用
收藏
页码:283 / 288
页数:6
相关论文
共 21 条
[1]   Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks [J].
Anderson, CW ;
Stolz, EA ;
Shamsunder, S .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (03) :277-286
[2]  
[Anonymous], P 19 INT C IEEE EMBS
[3]   A spelling device for the paralysed [J].
Birbaumer, N ;
Ghanayim, N ;
Hinterberger, T ;
Iversen, I ;
Kotchoubey, B ;
Kübler, A ;
Perelmouter, J ;
Taub, E ;
Flor, H .
NATURE, 1999, 398 (6725) :297-298
[4]  
Deller Jr J. R., 1993, DISCRETE TIME PROCES
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]  
Fukunaga K., 1990, INTRO STAT PATTERN R
[7]   Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI) [J].
Guger, C ;
Ramoser, H ;
Pfurtscheller, G .
IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, 2000, 8 (04) :447-456
[8]   Graz brain-computer interface II: Towards communication between humans and computers based on online classification of three different EEG patterns [J].
Kalcher, J ;
Flotzinger, D ;
Neuper, C ;
Golly, S ;
Pfurtscheller, G .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1996, 34 (05) :382-388
[9]   Self-regulation of slow cortical potentials in completely paralyzed human patients [J].
Kuebler, A ;
Kotchoubey, B ;
Salzmann, HP ;
Ghanayim, N ;
Perelmouter, J ;
Hömberg, V ;
Birbaumer, N .
NEUROSCIENCE LETTERS, 1998, 252 (03) :171-174
[10]  
NEUPER C, 1999, HANDB EL CL, V6, P303