Benchmark and mean-variance problems for insurers

被引:178
作者
Bäuerle, N [1 ]
机构
[1] Univ Hannover, Inst Math Stochast, D-30167 Hannover, Germany
关键词
stochastic LQ problem; Lagrange theory; HJB equation;
D O I
10.1007/s00186-005-0446-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the classical Cramer-Lundberg model with dynamic proportional reinsurance and solve the problem of finding the optimal reinsurance strategy which minimizes the expected quadratic distance of the risk reserve to a given benchmark. This result is extended to a mean-variance problem.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 8 条
[1]  
FRAMSTAD NC, 1999, WORKSH MATH FIN INRI, P9
[2]   Optimal portfolio selection when stock prices follow an jump-diffusion process [J].
Guo, WJ ;
Xu, CM .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2004, 60 (03) :485-496
[3]   An extension of Arrow's result on optimality of a stop loss contract [J].
Kaluszka, M .
INSURANCE MATHEMATICS & ECONOMICS, 2004, 35 (03) :527-536
[4]   Dynamic mean-variance portfolio selection with no-shorting constraints [J].
Li, X ;
Zhou, XY ;
Lim, AEB .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (05) :1540-1555
[5]  
Luenberger D. G., 2013, Investment science, V2nd
[6]  
Oksendal B., 2005, Applied stochastic control of jump diffusions
[7]  
Zhou XY, 2003, STOCHASTIC MODELING AND OPTIMIZATION: WITH APPLICATIONS IN QUEUES, FINANCE, AND SUPPLY CHAINS, P279
[8]   Continuous-time mean-variance portfolio selection: A stochastic LQ framework [J].
Zhou, XY ;
Li, D .
APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 42 (01) :19-33