A photonic-plasmonic structure for enhancing light absorption in thin film solar cells

被引:96
作者
Bhattacharya, Joydeep [1 ,2 ]
Chakravarty, Nayan [1 ,2 ]
Pattnaik, Sambit [1 ,2 ]
Slafer, W. Dennis [3 ]
Biswas, Rana [1 ,2 ,4 ,5 ]
Dalal, Vikram L. [1 ,2 ]
机构
[1] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
[3] Lightwave Power, Cambridge, MA 02138 USA
[4] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[5] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
关键词
light absorption; phonon-plasmon interactions; photoconductivity; reflectivity; silicon; silver; solar cells; zinc compounds; MICROCRYSTALLINE SILICON; OPTICAL-ABSORPTION; ENHANCEMENT; NANOWIRE;
D O I
10.1063/1.3641469
中图分类号
O59 [应用物理学];
学科分类号
摘要
We describe a photonic-plasmonic nanostructure, for significantly enhancing the absorption of long-wavelength photons in thin-film silicon solar cells, with the promise of exceeding the classical 4n(2) limit for enhancement. We compare identical solar cells deposited on the photonic-plasmonic structure, randomly textured back reflectors and silver-coated flat reflectors. The state-of-the-art back reflectors, using annealed Ag or etched ZnO, had high diffuse and total reflectance. For nano-crystalline Si absorbers with comparable thickness, the highest absorption and photo-current of 21.5 mA/cm(2) was obtained for photonic-plasmonic back-reflectors. The periodic photonic plasmonic structures scatter and reradiate light more effectively than a randomly roughened surface. (C) 2011 American Institute of Physics. [doi:10.1063/1.3641469]
引用
收藏
页数:3
相关论文
共 34 条
[1]   Plasmonics for improved photovoltaic devices (vol 9, pg 205, 2010) [J].
Atwater, Harry A. ;
Polman, Albert .
NATURE MATERIALS, 2010, 9 (10) :865-865
[2]   Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells [J].
Battaglia, Corsin ;
Escarre, Jordi ;
Soederstroem, Karin ;
Erni, Lukas ;
Ding, Laura ;
Bugnon, Gregory ;
Billet, Adrian ;
Boccard, Mathieu ;
Barraud, Loris ;
De Wolf, Stefaan ;
Haug, Franz-Josef ;
Despeisse, Matthieu ;
Ballif, Christophe .
NANO LETTERS, 2011, 11 (02) :661-665
[3]   Experimental studies and limitations of the light trapping and optical losses in microcrystalline silicon solar cells [J].
Berginski, Michael ;
Huepkes, Juergen ;
Gordijn, Aad ;
Reetz, Wilfried ;
Waetjen, Timo ;
Rech, Bernd ;
Wuttig, Matthias .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (09) :1037-1042
[4]   Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector [J].
Biswas, R. ;
Bhattacharya, J. ;
Lewis, B. ;
Chakravarty, N. ;
Dalal, V. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (12) :2337-2342
[5]   Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit [J].
Biswas, Rana ;
Xu, Chun .
OPTICS EXPRESS, 2011, 19 (14) :A664-A672
[6]   Simulation and modelling of photonic and plasmonic crystal back reflectors for efficient light trapping [J].
Biswas, Rana ;
Zhou, Dayu .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2010, 207 (03) :667-670
[7]   A conceptual model of light coupling by pillar diffraction gratings [J].
Catchpole, K. R. ;
Green, M. A. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (06)
[8]   Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells [J].
Curtin, Benjamin ;
Biswas, Rana ;
Dalal, Vikram .
APPLIED PHYSICS LETTERS, 2009, 95 (23)
[9]   Modelling and optimization of a-Si:H solar cells with ZnO:Al back reflector [J].
Dagamseh, A. M. K. ;
Vet, B. ;
Sutta, P. ;
Zeman, M. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (12) :2119-2123
[10]  
Dahal L, 2008, P 33 PHOT SPEC C, V1