Robustness analysis tools for an uncertainty set obtained by prediction error identification

被引:53
作者
Bombois, X
Gevers, M
Scorletti, G
Anderson, BDO
机构
[1] Delft Univ Technol, Dept Appl Phys, Sect MMR, NL-2628 CJ Delft, Netherlands
[2] Univ Catholique Louvain, CESAME, B-1348 Louvain, Belgium
[3] Inst Sci Mat & Rayonnement, LAP, F-14050 Caen, France
[4] Australian Natl Univ, RSISE, Canberra, ACT 0200, Australia
关键词
identification for control; robust stability; robust performance; LMI;
D O I
10.1016/S0005-1098(01)00104-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a robust stability and performance analysis for an uncertainty set delivered by classical prediction error identification. This nonstandard uncertainty set, which is a set of parametrized transfer functions with a parameter vector in an ellipsoid, contains the true system at a certain probability level. Our robust stability result is a necessary and sufficient condition for the stabilization, by a given controller, of all systems in such uncertainty set. The main new technical contribution of this paper is our robust performance result: we show that the worst case performance achieved over all systems in such an uncertainty region is the solution of a convex optimization problem involving linear matrix inequality constraints. Note that we only consider single input-single output systems. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1629 / 1636
页数:8
相关论文
共 19 条
[1]  
Bhattacharyya S., 1995, ROBUST CONTROL PARAM
[2]   ROBUST STABILITY WITH STRUCTURED REAL PARAMETER PERTURBATIONS [J].
BIERNACKI, RM ;
HWANG, H ;
BHATTACHARYYA, SP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (06) :495-506
[3]  
Bombois X., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P2816, DOI 10.1109/CDC.1999.831360
[4]  
BOMBOIS X, 2000, P 39 IEEE C DEC CONT
[5]  
Bombois X., 2000, THESIS U CATHOLIQUE
[6]  
Boyd S, 1994, STUDIES APPL MATH, V15
[7]   Frequency-domain tests for validation of linear fractional uncertain models [J].
Chen, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (06) :748-760
[8]   A MEASURE OF WORST-CASE H-INFINITY PERFORMANCE AND OF LARGEST ACCEPTABLE UNCERTAINTY [J].
FAN, MKH ;
TITS, AL .
SYSTEMS & CONTROL LETTERS, 1992, 18 (06) :409-421
[9]   Computation of the robustness margin with the skewed μ tool [J].
Ferreres, G ;
Fromion, V .
SYSTEMS & CONTROL LETTERS, 1997, 32 (04) :193-202
[10]  
Gevers M., 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), P326, DOI 10.1109/ACC.1999.782794