Curvature singularities, tidal forces and the viability of Palatini f(R) gravity

被引:72
作者
Barausse, E. [1 ,2 ]
Sotiriou, T. P. [1 ,2 ,3 ]
Miller, J. C. [1 ,2 ,4 ]
机构
[1] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England
关键词
D O I
10.1088/0264-9381/25/10/105008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In a previous paper we showed that static spherically symmetric objects which, in the vicinity of their surface, are well described by a polytropic equation of state with 3/ 2 < Gamma < 2 exhibit a curvature singularity in Palatini f(R) gravity. We argued that this casts serious doubt on the validity of Palatini f ( R) gravity as a viable alternative to general relativity. In the present paper, we further investigate this characteristic of Palatini f ( R) gravity in order to clarify its physical interpretation and consequences.
引用
收藏
页数:15
相关论文
共 51 条
[1]   Post-newtonian parameters from alternative theories of gravity [J].
Allemandi, G ;
Francaviglia, M ;
Ruggiero, ML ;
Tartaglia, A .
GENERAL RELATIVITY AND GRAVITATION, 2005, 37 (11) :1891-1904
[2]   Accelerated cosmological models in first-order nonlinear gravity [J].
Allemandi, G ;
Borowiec, A ;
Francaviglia, M .
PHYSICAL REVIEW D, 2004, 70 (04)
[3]   Constraining extended theories of gravity using Solar System tests [J].
Allemandi, Gianluca ;
Ruggiero, Matteo Luca .
GENERAL RELATIVITY AND GRAVITATION, 2007, 39 (09) :1381-1388
[4]   Cosmological constraints on f(R) gravity theories within the Palatini approach [J].
Amarzguioui, M. ;
Elgaroy, O. ;
Mota, D. F. ;
Multamaki, T. .
ASTRONOMY & ASTROPHYSICS, 2006, 454 (03) :707-714
[5]  
[Anonymous], 2004, RELATIVISTS TOOLKIT
[6]   The Supernova Legacy Survey:: measurement of ΩM, ΩΛ and w from the first year data set [J].
Astier, P ;
Guy, J ;
Regnault, N ;
Pain, R ;
Aubourg, E ;
Balam, D ;
Basa, S ;
Carlberg, RG ;
Fabbro, S ;
Fouchez, D ;
Hook, IM ;
Howell, DA ;
Lafoux, H ;
Neill, JD ;
Palanque-Delabrouille, N ;
Perrett, K ;
Pritchet, CJ ;
Rich, J ;
Sullivan, M ;
Taillet, R ;
Aldering, G ;
Antilogus, P ;
Arsenijevic, V ;
Balland, C ;
Baumont, S ;
Bronder, J ;
Courtois, H ;
Ellis, RS ;
Filiol, M ;
Gonçalves, AC ;
Goobar, A ;
Guide, D ;
Hardin, D ;
Lusset, V ;
Lidman, C ;
McMahon, R ;
Mouchet, M ;
Mourao, A ;
Perlmutter, S ;
Ripoche, P ;
Tao, C ;
Walton, N .
ASTRONOMY & ASTROPHYSICS, 2006, 447 (01) :31-U31
[7]   A no-go theorem for polytropic spheres in Palatini f(R) gravity [J].
Barausse, Enrico ;
Sotiriou, Thomas P. ;
Miller, John C. .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (06)
[8]   f(R) cosmology in the first order formalism [J].
Barraco, D ;
Hamity, VH ;
Vucetich, H .
GENERAL RELATIVITY AND GRAVITATION, 2002, 34 (04) :533-547
[9]  
Boyd T., 2003, PHYS PLASMAS
[10]  
BUCHDAHL HA, 1970, MON NOT R ASTRON SOC, V150, P1