Acrolein is a product of lipid peroxidation reaction - Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins

被引:447
作者
Uchida, K
Kanematsu, M
Morimitsu, Y
Osawa, T
Noguchi, N
Niki, E [1 ]
机构
[1] Nagoya Univ, Grad Sch Bioagr Sci, Lab Food & Biodynam, Nagoya, Aichi 4648601, Japan
[2] Univ Tokyo, Adv Sci & Technol Res Ctr, Tokyo 153, Japan
关键词
D O I
10.1074/jbc.273.26.16058
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lipoprotein peroxidation, especially the modification of apolipoprotein B-100, has been implicated to play an important role in the pathogenesis of atherosclerosis. However, there have been few detailed insights into the chemical mechanism of derivatization of apolipoproteins during oxidation, In the present study, we provide evidence that the formation of the toxic pollutant acrolein (CH2=CH-CHO) and its conjugate with lysine residues is involved in the oxidative modification of human low density lipoprotein (LDL), Upon incubation with LDL, acrolein preferentially reacted with lysine residues. To determine the structure of acrolein-lysine adduct in protein, the reaction of acrolein with a lysine derivative was carried out. Employing N-alpha-acetyllysine, we detected a single product, which was identified to be a novel acrolein-lysine adduct, N-alpha-acetyl-N-epsilon-(3-formyl-3,4-dehydropiperidino)lysine. The acid hydrolysis of the adduct led to the derivative that was detectable with amino acid analysis. It was revealed that, upon in vitro incubation of LDL with acrolein, the lysine residues that had disappeared were partially recovered by N-epsilon-(3-formyl-3,4-dehydropiperidino)lysine. In addition, we found that the same derivative was detected in the oxidatively modified LDL with Cu2+ and that the adduct formation was correlated with LDL peroxidation assessed by the consumption of alpha-tocopherol and cholesteryl ester and the concomitant formation of cholesteryl ester hydroperoxide. Enzyme-linked immunosorbent assay that measures free acrolein revealed that a considerable amount of acrolein was released from the Cu2+-oxidized LDL. Furthermore, metal-catalyzed oxidation of arachidonate was associated with the formation of acrolein, indicating that polyunsaturated fatty acids including arachidonate represent potential sources of acrolein generated during the peroxidation of LDL. These results indicate that acrolein is not just a pollutant but also a lipid peroxidation product that could be ubiquitously generated in biological systems.
引用
收藏
页码:16058 / 16066
页数:9
相关论文
共 34 条
[1]   Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein - A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation [J].
Anderson, MM ;
Hazen, SL ;
Hsu, FF ;
Heinecke, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (03) :424-432
[2]   MONOCYTES AND NEUTROPHILS OXIDIZE LOW-DENSITY LIPOPROTEIN MAKING IT CYTO-TOXIC [J].
CATHCART, MK ;
MOREL, DW ;
CHISOLM, GM .
JOURNAL OF LEUKOCYTE BIOLOGY, 1985, 38 (02) :341-350
[3]   MYELOPEROXIDASE, A CATALYST FOR LIPOPROTEIN OXIDATION, IS EXPRESSED IN HUMAN ATHEROSCLEROTIC LESIONS [J].
DAUGHERTY, A ;
DUNN, JL ;
RATERI, DL ;
HEINECKE, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 94 (01) :437-444
[4]   CHEMISTRY AND BIOCHEMISTRY OF 4-HYDROXYNONENAL, MALONALDEHYDE AND RELATED ALDEHYDES [J].
ESTERBAUER, H ;
SCHAUR, RJ ;
ZOLLNER, H .
FREE RADICAL BIOLOGY AND MEDICINE, 1991, 11 (01) :81-128
[5]   THE ROLE OF LIPID-PEROXIDATION AND ANTIOXIDANTS IN OXIDATIVE MODIFICATION OF LDL [J].
ESTERBAUER, H ;
GEBICKI, J ;
PUHL, H ;
JURGENS, G .
FREE RADICAL BIOLOGY AND MEDICINE, 1992, 13 (04) :341-390
[6]   The advanced glycation end product, N-(epsilon)(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions [J].
Fu, MX ;
Requena, JR ;
Jenkins, AJ ;
Lyons, TJ ;
Baynes, JW ;
Thorpe, SR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (17) :9982-9986
[7]  
GAN JC, 1987, RES COMMUN CHEM PATH, V55, P419
[8]   SUPEROXIDE-MEDIATED MODIFICATION OF LOW-DENSITY-LIPOPROTEIN BY ARTERIAL SMOOTH-MUSCLE CELLS [J].
HEINECKE, JW ;
BAKER, L ;
ROSEN, H ;
CHAIT, A .
JOURNAL OF CLINICAL INVESTIGATION, 1986, 77 (03) :757-761
[9]   ENHANCED MACROPHAGE DEGRADATION OF BIOLOGICALLY MODIFIED LOW-DENSITY LIPOPROTEIN [J].
HENRIKSEN, T ;
MAHONEY, EM ;
STEINBERG, D .
ARTERIOSCLEROSIS, 1983, 3 (02) :149-159
[10]   ENHANCED MACROPHAGE DEGRADATION OF LOW-DENSITY LIPOPROTEIN PREVIOUSLY INCUBATED WITH CULTURED ENDOTHELIAL-CELLS - RECOGNITION BY RECEPTORS FOR ACETYLATED LOW-DENSITY LIPOPROTEINS [J].
HENRIKSEN, T ;
MAHONEY, EM ;
STEINBERG, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (10) :6499-6503