Estimation of the reproduction number of dengue fever from spatial epidemic data

被引:148
作者
Chowell, G. [1 ]
Diaz-Duenas, P.
Miller, J. C.
Alcazar-Velazco, A.
Hyman, J. M.
Fenimore, P. W.
Castillo-Chavez, C.
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies & Math Modeling, Anal Grp, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA
[3] Inst Mexicano Seguro Social, Colima 28010, Mexico
[4] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
关键词
dengue; dengue hemorrhagic fever; spatial epidemic data; mathematical model; stage progression; reproduction number; Colima; Mexico;
D O I
10.1016/j.mbs.2006.11.011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dengue, a vector-borne disease, thrives in tropical and subtropical regions worldwide. A retrospective analysis of the 2002 dengue epidemic in Colima located on the Mexican central Pacific coast is carried out. We estimate the reproduction number from spatial epidemic data at the level of municipalities using two different methods: (1) Using a standard dengue epidemic model and assuming pure exponential initial epidemic growth and (2) Fitting a more realistic epidemic model to the initial phase of the dengue epidemic curve. Using Method 1, we estimate an overall mean reproduction number of 3.09 (95% Cl: 2.34,3.84) as well as local reproduction numbers whose values range from 1.24 (1.15,1.33) to 4.22 (2.90,5.54). Using Method 11, the overall mean reproduction number is estimated to be 2.0 (1.75,2.23) and local reproduction numbers ranging from 0.49 (0.0, 1.0) to 3.30 (1.63,4.97). Method I systematically overestimates the reproduction number relative to the refined Method II, and hence it would overestimate the intensity of interventions required for containment. Moreover, optimal intervention with defined resources demands different levels of locally tailored mitigation. Local epidemic peaks occur between the 24th and 35th week of the year, and correlate positively with the final local epidemic sizes (p = 0.92, P-value < 0.001). Moreover, final local epidemic sizes are found to be linearly related to the local population size (P-value < 0.001). This observation supports a roughly constant number of female mosquitoes per person across urban and rural regions. Published by Elsevier Inc.
引用
收藏
页码:571 / 589
页数:19
相关论文
共 51 条
[1]  
ANDERSON R M, 1991
[2]   SENSITIVITY AND UNCERTAINTY ANALYSIS OF COMPLEX-MODELS OF DISEASE TRANSMISSION - AN HIV MODEL, AS AN EXAMPLE [J].
BLOWER, SM ;
DOWLATABADI, H .
INTERNATIONAL STATISTICAL REVIEW, 1994, 62 (02) :229-243
[3]   A mathematical model for assessing control strategies against West Nile virus [J].
Bowman, C ;
Gumel, AB ;
van den Driessche, P ;
Wu, J ;
Zhu, H .
BULLETIN OF MATHEMATICAL BIOLOGY, 2005, 67 (05) :1107-1133
[4]  
Brauer F., 2000, MATH MODELS POPULATI
[5]   Bifurcation analysis of a mathematical model for malaria transmission [J].
Chitnis, Nakul ;
Cushing, J. M. ;
Hyman, J. M. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 67 (01) :24-45
[6]  
Chowell, 2006, Far East Journal of Theoretical Statistics, V19, P163
[7]   Identification of case clusters and counties with high infective connectivity in the 2001 epidemic of foot-and-mouth disease in Uruguay [J].
Chowell, G ;
Rivas, AL ;
Smith, SD ;
Hyman, JM .
AMERICAN JOURNAL OF VETERINARY RESEARCH, 2006, 67 (01) :102-113
[8]   Predicting scorpion sting incidence in an endemic region using climatological variables [J].
Chowell, G ;
Hyman, JM ;
Díaz-Dueñas, P ;
Hengartner, NW .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH, 2005, 15 (06) :425-435
[9]   Model parameters and outbreak control for SARS [J].
Chowell, G ;
Castillo-Chavez, C ;
Fenimore, PW ;
Kribs-Zaleta, CM ;
Arriola, L ;
Hyman, JM .
EMERGING INFECTIOUS DISEASES, 2004, 10 (07) :1258-1263
[10]  
CHOWELL G, 2006, J ENV HLTH, V68, P60