The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling

被引:324
作者
Schoenemeyer, A
Barnes, BJ
Mancl, ME
Latz, E
Goutagny, N
Pitha, PM
Fitzgerald, KA
Golenbock, DT
机构
[1] Univ Massachusetts, Sch Med, Div Infect Dis & Immunol, Worcester, MA 01605 USA
[2] Johns Hopkins Univ, Sch Med, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD 21231 USA
关键词
D O I
10.1074/jbc.M412584200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Interferon regulatory factors (IRFs) are critical components of virus-induced immune activation and type I interferon regulation. IRF3 and IRF7 are activated in response to a variety of viruses or after engagement of Toll-like receptor (TLR) 3 and TLR4 by double-stranded RNA and lipopolysaccharide, respectively. The activation of IRF5, is much more restricted. Here we show that in contrast to IRF3 and IRF7, IRF5 is not a target of the TLR3 signaling pathway but is activated by TLR7 or TLR8 signaling. We also demonstrate that MyD88, interleukin 1 receptor-associated kinase 1, and tumor necrosis factor receptor-associated factor 6 are required for the activation of IRF5 and IRF7 in the TLR7 signaling pathway. Moreover, ectopic expression of IRF5 enabled type I interferon production in response to TLR7 signaling, whereas knockdown of IRF5 by small interfering RNA reduced type I interferon induction in response to the TLR7 ligand, R-848. IRF5 and IRF7, therefore, emerge from these studies as critical mediators of TLR7 signaling.
引用
收藏
页码:17005 / 17012
页数:8
相关论文
共 73 条
[1]   Characterization of the interferon regulatory factor-7 and its potential role in the transcription activation of interferon A genes [J].
Au, WC ;
Moore, PA ;
LaFleur, DW ;
Tombal, B ;
Pitha, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (44) :29210-29217
[2]   IDENTIFICATION OF A MEMBER OF THE INTERFERON REGULATORY FACTOR FAMILY THAT BINDS TO THE INTERFERON-STIMULATED RESPONSE ELEMENT AND ACTIVATES EXPRESSION OF INTERFERON-INDUCED GENES [J].
AU, WC ;
MOORE, PA ;
LOWTHER, W ;
JUANG, YT ;
PITHA, PM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (25) :11657-11661
[3]   On the role of IRF in host defense [J].
Barnes, B ;
Lubyova, B ;
Pitha, PM .
JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, 2002, 22 (01) :59-71
[4]   Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection [J].
Barnes, BJ ;
Richards, J ;
Mancl, M ;
Hanash, S ;
Beretta, L ;
Pitha, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (43) :45194-45207
[5]   Virus-induced heterodimer formation between IRF-5 and IRF-7 modulates assembly of the IFNA enhanceosome in vivo and transcriptional activity of IFNA genes [J].
Barnes, BJ ;
Field, AE ;
Pitha-Rowe, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (19) :16630-16641
[6]   Multiple regulatory domains of IRF-5 control activation, cellular localization, and induction of chemokines that mediate recruitment of T lymphocytes [J].
Barnes, BJ ;
Kellum, MJ ;
Field, AE ;
Pitha, PM .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (16) :5721-5740
[7]   Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon α genes [J].
Barnes, BJ ;
Moore, PA ;
Pitha, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23382-23390
[8]   Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB-dependent gene transcription [J].
Bonnard, M ;
Mirtsos, C ;
Suzuki, S ;
Graham, K ;
Huang, JN ;
Ng, M ;
Itié, A ;
Wakeham, A ;
Shahinian, A ;
Henzel, WJ ;
Elia, AJ ;
Shillinglaw, W ;
Mak, TW ;
Cao, ZD ;
Yeh, WC .
EMBO JOURNAL, 2000, 19 (18) :4976-4985
[9]   TARF6 is a signal transducer for interleukin-1 [J].
Cao, ZD ;
Xiong, J ;
Takeuchi, M ;
Kurama, T ;
Goeddel, DV .
NATURE, 1996, 383 (6599) :443-446
[10]   IRAK: A kinase associated with the interleukin-1 receptor [J].
Cao, ZD ;
Henzel, WJ ;
Gao, XO .
SCIENCE, 1996, 271 (5252) :1128-1131