The low-temperature formation of liquid-crystal-like arrays made up of molecular complexes formed between molecular inorganic species and amphiphilic organic molecules is a convenient approach for the synthesis of mesostructure materials. This paper examines how the molecular shapes of covalent organosilanes, quaternary ammonium surfactants, and mixed surfactants in various reaction conditions can be used to synthesize silica-based mesophase configurations, MCM-41 (2d hexagonal, p6m), MCM-48 (cubic Ia3d), MCM-50 (lamellar), SBA-1 (cubic Pm3n), SBA-2 (3d hexagonal P6(3)/mmc), and SBA-3 (hexagonal p6m from acidic synthesis media). The structural function of surfactants in mesophase formation can to a first approximation be related to that of classical surfactants in water or other solvents with parallel roles for organic additives. The effective surfactant ion pair packing parameter, g = V/alpha(0)l, remains a useful molecular structure-directing index to characterize the geometry of the mesophase products, and phase transitions may be viewed as a variation of g in the liquid-crystal-Like solid phase. Solvent and cosolvent structure direction can be effectively used by varying polarity, hydrophobic/hydrophilic properties and functionalizing the surfactant molecule, for example with hydroxy group or variable charge. Surfactants and synthesis conditions can be chosen and controlled to obtain predicted silica-based mesophase products. A room-temperature synthesis of the bicontinuous cubic phase, MCM-48, is presented. A low-temperature (100 degrees C) and low-pH (7-10) treatment approach that can be used to give MCM-41 with high-quality, large pores (up to 60 Angstrom), and pore volumes as large as 1.6 cm(3)/g is described.