Infant rat model of the shaken baby syndrome: Preliminary characterization and evidence for the role of free radicals in cortical hemorrhaging and progressive neuronal degeneration

被引:53
作者
Smith, SL [1 ]
Andrus, PK [1 ]
Gleason, DD [1 ]
Hall, ED [1 ]
机构
[1] Pharmacia & Upjohn Inc, CNS Dis Res, Kalamazoo, MI 49001 USA
关键词
cortical hemorrhaging; free radicals; shaken baby syndrome; tirilazad mesylate;
D O I
10.1089/neu.1998.15.693
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Infants subjected to repeated episodes of violent shaking develop brain damage characterized by intracranial hemorrhage and progressive cortical atrophy. We have developed an animal model that mimics this pathological state and investigated its etiology and treatment. Anesthetized male rats, 6 days of age, were subjected to one episode of shaking per day for 3 consecutive days. Separate groups of rats were sacrificed 1 h postinjury on the third day of shaking for HPLC quantification of cortical . OH and vitamin E levels, and histological assessment of cortical hemorrhaging. Additional groups were sacrificed 7 or 14 days postinjury to demonstrate progressive neuronal degeneration via cortical wet weight comparisons. In comparison to noninjured shams, the results indicated that cortical vitamin E and . OH levels rose 53.7% (p < 0.005) and 457.1% (p < 0.001), respectively, in shaken infant rats. Brain histologies revealed a moderate-to-severe degree of cortical hemorrhaging in these animals 1 h postinjury. By 7 and 14 days postinjury, there was a 13.3% and 28.7% (p < 0.0001 vs. sham) loss of cortical tissue in shaken infants, respectively, indicating progressive neuronal degeneration. Treatment with 10 mg/kg (ip) of the 21-aminosteroid antioxidant, tirilazad mesylate, 10 min before and 2 h after each episode of shaking, resulted in a 53.1% attenuation of cortical . OH levels and a 34.9% decrease in brain hemorrhaging (p < 0.05 vs, vehicle). Tirilazad treatment did not, however, significantly effect cortical vitamin E concentrations at 1 h postinjury or the extent of progressive neuronal degeneration at either 7 or 14 days postinjury. The present animal model mimics the brain pathology seen in abused children. Our observation that tirilazad mesylate, an antioxidant-lipid peroxidation inhibitor, significantly reduces cortical . OH levels and brain hemorrhaging in shaken infant rats supports a role for oxygen radicals in the pathophysiology of this type of CNS injury. The failure of tirilazad to block progressive cortical degeneration suggests that mechanisms other than free radicals may be of prime importance in the mediation of this aspect of the pathology.
引用
收藏
页码:693 / 705
页数:13
相关论文
共 57 条
[1]   DIFFUSE AXONAL INJURY IN HEAD-INJURY - DEFINITION, DIAGNOSIS AND GRADING [J].
ADAMS, JH ;
DOYLE, D ;
FORD, I ;
GENNARELLI, TA ;
GRAHAM, DI ;
MCLELLAN, DR .
HISTOPATHOLOGY, 1989, 15 (01) :49-59
[2]  
ALEXANDER RC, 1989, RADIOLOGY, V173, P653
[3]   THE USE OF SALICYLATE HYDROXYLATION TO DETECT HYDROXYL RADICAL GENERATION IN ISCHEMIC AND TRAUMATIC BRAIN INJURY - REVERSAL BY TIRILAZAD MESYLATE (U-74006F) [J].
ALTHAUS, JS ;
ANDRUS, PK ;
WILLIAMS, CM ;
VONVOIGTLANDER, PF ;
CAZERS, AR ;
HALL, ED .
MOLECULAR AND CHEMICAL NEUROPATHOLOGY, 1993, 20 (02) :147-162
[4]   EVALUATION OF BRAIN-DAMAGE IN A RAT MODEL OF NEONATAL HYPOXIC-ISCHEMIA [J].
ANDINE, P ;
THORDSTEIN, M ;
KJELLMER, I ;
NORDBORG, C ;
THIRINGER, K ;
WENNBERG, E ;
HAGBERG, H .
JOURNAL OF NEUROSCIENCE METHODS, 1990, 35 (03) :253-260
[5]  
[Anonymous], J PEDIAT NEUROSCI
[6]   EVIDENCE FOR 21-AMINOSTEROID ASSOCIATION WITH THE HYDROPHOBIC DOMAINS OF BRAIN MICROVESSEL ENDOTHELIAL-CELLS [J].
AUDUS, KL ;
GUILLOT, FL ;
BRAUGHLER, JM .
FREE RADICAL BIOLOGY AND MEDICINE, 1991, 11 (04) :361-371
[7]   Effects of the 21-amino steroid tirilazad mesylate (U-74006F) on brain damage and edema after perinatal hypoxia-ischemia in the rat [J].
Bagenholm, R ;
Andine, P ;
Hagberg, H .
PEDIATRIC RESEARCH, 1996, 40 (03) :399-403
[8]  
Bostrom K, 1992, Acta Neurochir Suppl (Wien), V55, P25
[9]   Secondary insults increase injury after controlled cortical impact in rats [J].
Cherian, L ;
Robertson, CS ;
Goodman, JC .
JOURNAL OF NEUROTRAUMA, 1996, 13 (07) :371-383
[10]  
CHESNUT RM, 1993, ACTA NEUROCHIR, P121