Metal-Organic Frameworks for Oxygen Storage

被引:110
作者
DeCoste, Jared B. [1 ]
Weston, Mitchell H. [2 ]
Fuller, Patrick E. [2 ]
Tovar, Trenton M. [4 ]
Peterson, Gregory W. [5 ]
LeVan, M. Douglas [4 ]
Farha, Omar K. [2 ,3 ]
机构
[1] Leidos Inc, Gunpowder, MD 21010 USA
[2] NuMat Technol, Skokie, IL 60077 USA
[3] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[4] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA
[5] Edgewood Chem Biol Ctr, Aberdeen Proving Ground, MD 21010 USA
关键词
adsorption; metal-organic frameworks; microporous materials; oxygen; PRESSURE EXCESS ISOTHERMS; CARBON MOLECULAR-SIEVE; HYDROGEN STORAGE; ENERGY MIGRATION; ADSORPTION; METHANE; SEPARATIONS; SIMULATION; STABILITY; CAPTURE;
D O I
10.1002/anie.201408464
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a systematic study of metal-organic frameworks (MOFs) for the storage of oxygen. The study starts with grand canonical Monte Carlo simulations on a suite of 10000 MOFs for the adsorption of oxygen. From these data, the MOFs were down selected to the prime candidates of HKUST-1 (Cu-BTC) and NU-125, both with coordinatively unsaturated Cu sites. Oxygen isotherms up to 30 bar were measured at multiple temperatures to determine the isosteric heat of adsorption for oxygen on each MOF by fitting to a Toth isotherm model. High pressure (up to 140 bar) oxygen isotherms were measured for HKUST-1 and NU-125 to determine the working capacity of each MOF. Compared to the zeolite NaX and Norit activated carbon, NU-125 has an increased excess capacity for oxygen of 237% and 98%, respectively. These materials could ultimately prove useful for oxygen storage in medical, military, and aerospace applications.
引用
收藏
页码:14092 / 14095
页数:4
相关论文
共 38 条
[1]  
[Anonymous], 1998, ADSORPTION ANALYSISE
[2]   Sorption kinetics of eight gases on a carbon molecular sieve at elevated pressure [J].
Bae, YS ;
Lee, CH .
CARBON, 2005, 43 (01) :95-107
[3]   Toxic gas removal - metal-organic frameworks for the capture and degradation of toxic gases and vapours [J].
Barea, Elisa ;
Montoro, Carmen ;
Navarro, Jorge A. R. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) :5419-5430
[4]   A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J].
Cavka, Jasmina Hafizovic ;
Jakobsen, Soren ;
Olsbye, Unni ;
Guillou, Nathalie ;
Lamberti, Carlo ;
Bordiga, Silvia ;
Lillerud, Karl Petter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (42) :13850-13851
[5]   A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J].
Chui, SSY ;
Lo, SMF ;
Charmant, JPH ;
Orpen, AG ;
Williams, ID .
SCIENCE, 1999, 283 (5405) :1148-1150
[6]   Luminescent Functional Metal-Organic Frameworks [J].
Cui, Yuanjing ;
Yue, Yanfeng ;
Qian, Guodong ;
Chen, Banglin .
CHEMICAL REVIEWS, 2012, 112 (02) :1126-1162
[7]   Metal-Organic Frameworks for Air Purification of Toxic Chemicals [J].
DeCoste, Jared B. ;
Peterson, Gregory W. .
CHEMICAL REVIEWS, 2014, 114 (11) :5695-5727
[8]   The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66 [J].
DeCoste, Jared B. ;
Peterson, Gregory W. ;
Schindler, Bryan J. ;
Killops, Kato L. ;
Browe, Matthew A. ;
Mahle, John J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (38) :11922-11932
[9]   Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit [J].
DeCoste, Jared B. ;
Peterson, Gregory W. ;
Jasuja, Himanshu ;
Glover, T. Grant ;
Huang, You-gui ;
Walton, Krista S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (18) :5642-5650
[10]   Using molecular simulation to characterise metal-organic frameworks for adsorption applications [J].
Dueren, Tina ;
Bae, Youn-Sang ;
Snurr, Randall Q. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1237-1247