A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1

被引:133
作者
Dabir, Deepa V.
Leverich, Edward P.
Kim, Sung-Kun
Tsai, Frederick D.
Hirasawa, Masakazu
Knaff, David B.
Koehler, Carla M.
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90024 USA
[2] Texas Tech Univ, Ctr Biotechnol & Genom, Dept Chem & Biochem, Lubbock, TX USA
[3] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA USA
[5] Baylor Univ, Dept Chem & Biochem, Waco, TX USA
关键词
mitochondria; protein import; protein translocation; redox chemistry;
D O I
10.1038/sj.emboj.7601909
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Erv1 is a flavin-dependent sulfhydryl oxidase in the mitochondrial intermembrane space (IMS) that functions in the import of cysteine- rich proteins. Redox titrations of recombinant Erv1 showed that it contains three distinct couples with midpoint potentials of -320, -215, and -150mV. Like all redox- active enzymes, Erv1 requires one or more electron acceptors. We have generated strains with erv1 conditional alleles and employed biochemical and genetic strategies to facilitate identifying redox pathways involving Erv1. Here, we report that Erv1 forms a 1: 1 complex with cytochrome c and a reduced Erv1 can transfer electrons directly to the ferric form of the cytochrome. Erv1 also utilized molecular oxygen as an electron acceptor to generate hydrogen peroxide, which is subsequently reduced to water by cytochrome c peroxidase (Ccp1). Oxidized Ccp1 was in turn reduced by the Erv1-reduced cytochrome c. By coupling these pathways, cytochrome c and Ccp1 function efficiently as Erv1- dependent electron acceptors. Thus, we propose that Erv1 utilizes diverse pathways for electron shuttling in the IMS.
引用
收藏
页码:4801 / 4811
页数:11
相关论文
共 46 条
[1]   Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c [J].
Allen, S ;
Balabanidou, V ;
Sideris, DP ;
Lisowsky, T ;
Tokatlidis, K .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 353 (05) :937-944
[2]   Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10 [J].
Allen, S ;
Lu, H ;
Thornton, D ;
Tokatlidis, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (40) :38505-38513
[3]   Oxidative protein folding is driven by the electron transport system [J].
Bader, M ;
Muse, W ;
Ballou, DP ;
Gassner, C ;
Bardwell, JCA .
CELL, 1999, 98 (02) :217-227
[4]  
BOSSHARD HR, 1986, J BIOL CHEM, V261, P190
[5]  
BOVERIS A, 1976, ACTA PHYSIOL LAT AM, V26, P303
[6]   Effects of oxygen concentration on the expression of cytochrome c and cytochrome c oxidase genes in yeast [J].
Burke, PV ;
Raitt, DC ;
Allen, LA ;
Kellogg, EA ;
Poyton, RO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (23) :14705-14712
[7]   Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins [J].
Chacinska, A ;
Pfannschmidt, S ;
Wiedemann, N ;
Kozjak, V ;
Szklarz, LKS ;
Schulze-Specking, A ;
Truscott, KN ;
Guiard, B ;
Meisinger, C ;
Pfanner, N .
EMBO JOURNAL, 2004, 23 (19) :3735-3746
[8]   Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins [J].
Claypool, Steven M. ;
McCaffery, J. Michael ;
Koehler, Carla M. .
JOURNAL OF CELL BIOLOGY, 2006, 174 (03) :379-390
[9]   Multidomain flavin-dependent sulfhydryl oxidases [J].
Coppock, Donald L. ;
Thorpe, Colin .
ANTIOXIDANTS & REDOX SIGNALING, 2006, 8 (3-4) :300-311
[10]   PERSISTENCE OF CYTOCHROME-C BINDING TO MEMBRANES AT PHYSIOLOGICAL MITOCHONDRIAL INTERMEMBRANE SPACE IONIC-STRENGTH [J].
CORTESE, JD ;
VOGLINO, AL ;
HACKENBROCK, CR .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1995, 1228 (2-3) :216-228