Finite-length models of carbon nanotubes based on clar sextet theory

被引:46
作者
Baldoni, M.
Sgamellotti, A.
Mercuri, F. [1 ]
机构
[1] CNR, Dept Chem, ISTM, I-06123 Perugia, Italy
[2] Univ Perugia, UDR INSTM, I-06123 Perugia, Italy
关键词
D O I
10.1021/ol7018289
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Finite-length models of metallic and semiconducting carbon nanotubes (CNTs) based on Clar sextet theory of aromatic systems are proposed. For metallic CNTs, the electronic properties of finite-length models converge monotonically to the values expected for quasi-monodimensional metallic systems. For semiconducting CNTs, the use of finite-length models as proposed in this work leads to a fast convergence of the electronic properties to the values expected for the corresponding infinite-length nanotube.
引用
收藏
页码:4267 / 4270
页数:4
相关论文
共 24 条
[1]   Effect of oxygen chemisorption on the energy band gap of a chiral semiconducting single-walled carbon nanotube [J].
Barone, V ;
Heyd, J ;
Scuseria, GE .
CHEMICAL PHYSICS LETTERS, 2004, 389 (4-6) :289-292
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   Effects of finite carbon nanotube length on sidewall addition of fluorine atom and methylene [J].
Bettinger, HF .
ORGANIC LETTERS, 2004, 6 (05) :731-734
[4]   Side-wall opening of single-walled carbon nanotubes (SWCNTs) by chemical modification: A critical theoretical study [J].
Chen, ZF ;
Nagase, S ;
Hirsch, A ;
Haddon, RC ;
Thiel, W ;
Schleyer, PV .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (12) :1552-1554
[5]  
Clar E., 1972, The Aromatic Sextet
[6]  
Clar E., 1964, POLYCYCLIC HYDROCARB
[7]   A new ONIOM implementation in Gaussian98.: Part I.: The calculation of energies, gradients, vibrational frequencies and electric field derivatives [J].
Dapprich, S ;
Komáromi, I ;
Byun, KS ;
Morokuma, K ;
Frisch, MJ .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1999, 461 :1-21
[8]  
DRESSELHAUS MS, 1996, SCI FULLERNES CARBON
[9]  
Frisch M.J., 2004, Gaussian 03
[10]  
Revision C.02