What can go wrong when you assume that correlated data are independent: an illustration from the evaluation of a childhood health intervention in Brazil

被引:43
作者
Cannon, MJ
Warner, L
Taddei, JA
Kleinbaum, DG
机构
[1] Emory Univ, Dept Epidemiol, Atlanta, GA 30322 USA
[2] Escola Paulista Med, Dept Pediat, BR-04023 Sao Paulo, Brazil
关键词
D O I
10.1002/sim.682
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The key analytical challenge presented by longitudinal data is that observations from one individual tend to be correlated. Although longitudinal data commonly occur in medicine and public health, the issue of correlation is sometimes ignored or avoided in the analysis. If longitudinal data are modelled using regression techniques that ignore correlation, biased estimates of regression parameter variances can occur. This bias can lead to invalid inferences regarding measures of effect such as odds ratios (OR) or risk ratios (RR). Using the example of a childhood health intervention in Brazil, we illustrate how ignoring correlation leads to incorrect conclusions about the effectiveness of the intervention. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:1461 / 1467
页数:7
相关论文
共 11 条
[1]  
[Anonymous], 1994, EPI INFO VERSION 6 W
[2]  
Diggle P. J., 2002, ANAL LONGITUDINAL DA
[3]   Acquired immunodeficiency syndrome-associated Kaposi's sarcoma and human herpesvirus 8 DNA detection in serial peripheral blood mononuclear cell samples [J].
Dupon, M ;
Masquelier, B ;
Cazorla, C ;
Chêne, G ;
Dumon, B ;
Ragnaud, JM ;
de Barbeyrac, B ;
Bébéar, C ;
Lacut, JY ;
Fleury, HJA .
RESEARCH IN VIROLOGY, 1997, 148 (06) :417-425
[4]  
Hanushek E.A., 1977, STAT METHODS SOCIAL
[5]   LONGITUDINAL DATA-ANALYSIS USING GENERALIZED LINEAR-MODELS [J].
LIANG, KY ;
ZEGER, SL .
BIOMETRIKA, 1986, 73 (01) :13-22
[6]   Improving power with repeated measures: diet and serum lipids [J].
Marshall, JA ;
Scarbro, S ;
Shetterly, SM ;
Jones, RH .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 1998, 67 (05) :934-939
[7]   CORRELATED BINARY REGRESSION WITH COVARIATES SPECIFIC TO EACH BINARY OBSERVATION [J].
PRENTICE, RL .
BIOMETRICS, 1988, 44 (04) :1033-1048
[8]  
*SAS I, 1997, SAS STAT SOFTW CHANG
[9]  
*WHO EXP COMM PHYS, 1995, WHO TECH REP SER, V854
[10]  
ZEGER SL, 1985, BIOMETRIKA, V72, P31, DOI 10.1093/biomet/72.1.31