Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions

被引:187
作者
Bassel, George W. [1 ,2 ,3 ]
Lan, Hui [4 ]
Glaab, Enrico [5 ]
Gibbs, Daniel J. [1 ,2 ]
Gerjets, Tanja [1 ,2 ]
Krasnogor, Natalio [5 ]
Bonner, Anthony J. [4 ]
Holdsworth, Michael J. [1 ,2 ]
Provart, Nicholas J. [3 ]
机构
[1] Univ Nottingham, Sch Biosci, Div Plant & Crop Sci, Loughborough LE12 5RD, Leics, England
[2] Univ Nottingham, Ctr Plant Integrat Biol, Loughborough LE12 5RD, Leics, England
[3] Univ Toronto, Ctr Anal Genome Evolut & Funct, Dept Cell & Syst Biol, Toronto, ON M5S 3B2, Canada
[4] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 2E4, Canada
[5] Univ Nottingham, Sch Comp Sci, Nottingham NG8 1BB, England
基金
英国生物技术与生命科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
ARABIDOPSIS-THALIANA; GIBBERELLIN BIOSYNTHESIS; COEXPRESSION NETWORKS; EXPRESSION PROFILES; LOW-TEMPERATURE; GENE; DORMANCY; ABA; PATHWAY; ABI3;
D O I
10.1073/pnas.1100958108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Seed germination is a complex trait of key ecological and agronomic significance. Few genetic factors regulating germination have been identified, and the means by which their concerted action controls this developmental process remains largely unknown. Using publicly available gene expression data from Arabidopsis thaliana, we generated a condition-dependent network model of global transcriptional interactions (SeedNet) that shows evidence of evolutionary conservation in flowering plants. The topology of the SeedNet graph reflects the biological process, including two state-dependent sets of interactions associated with dormancy or germination. SeedNet highlights interactions between known regulators of this process and predicts the germination-associated function of uncharacterized hub nodes connected to them with 50% accuracy. An intermediate transition region between the dormancy and germination subdomains is enriched with genes involved in cellular phase transitions. The phase transition regulators SERRATE and EARLY FLOWERING IN SHORT DAYS from this region affect seed germination, indicating that conserved mechanisms control transitions in cell identity in plants. The SeedNet dormancy region is strongly associated with vegetative abiotic stress response genes. These data suggest that seed dormancy, an adaptive trait that arose evolutionarily late, evolved by coopting existing genetic pathways regulating cellular phase transition and abiotic stress. SeedNet is available as a community resource (http://vseed.nottingham.ac.uk) to aid dissection of this complex trait and gene function in diverse processes.
引用
收藏
页码:9709 / 9714
页数:6
相关论文
共 42 条
[1]  
[Anonymous], INT S GRAPH DRAW
[2]   Approaches for extracting practical information from gene co-expression networks in plant biology [J].
Aoki, Koh ;
Ogata, Yoshiyuki ;
Shibata, Daisuke .
PLANT AND CELL PHYSIOLOGY, 2007, 48 (03) :381-390
[3]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]   Elucidating the germination transcriptional program using small molecules [J].
Bassel, George W. ;
Fung, Pauline ;
Chow, Tsz-Fung Freeman ;
Foong, Justin A. ;
Provart, Nicholas J. ;
Cutler, Sean R. .
PLANT PHYSIOLOGY, 2008, 147 (01) :143-155
[6]   Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways [J].
Bentsink, Leonie ;
Hanson, Johannes ;
Hanhart, Corrie J. ;
Blankestijn-de Vries, Hetty ;
Coltrane, Colin ;
Keizer, Paul ;
El-Lithy, Mohamed ;
Alonso-Blanco, Carlos ;
Teresa de Andres, M. ;
Reymond, Matthieu ;
van Eeuwijk, Fred ;
Smeekens, Sjef ;
Koornneef, Maarten .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (09) :4264-4269
[7]   Seed germination and dormancy [J].
Bewley, JD .
PLANT CELL, 1997, 9 (07) :1055-1066
[8]   Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism [J].
Cadman, Cassandra S. C. ;
Toorop, Peter E. ;
Hilhorst, Henk W. M. ;
Finch-Savage, William E. .
PLANT JOURNAL, 2006, 46 (05) :805-822
[9]   Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis [J].
Carrera, Esther ;
Holman, Tara ;
Medhurst, Anne ;
Dietrich, Daniela ;
Footitt, Steven ;
Theodoulou, Frederica L. ;
Holdsworth, Michael J. .
PLANT JOURNAL, 2008, 53 (02) :214-224
[10]   Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana [J].
Chiang, George C. K. ;
Barua, Deepak ;
Kramer, Elena M. ;
Amasino, Richard M. ;
Donohue, Kathleen .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (28) :11661-11666