Epigenetic changes in cancer

被引:250
作者
Gronbaek, Kirsten [1 ]
Hother, Christoffer
Jones, Peter A.
机构
[1] Rigshosp, Dept Hematol, DK-2100 Copenhagen, Denmark
[2] Univ So Calif, Keck Sch Med, Kenneth Norris Jr Comprehens Canc Ctr, Dept Urol Biochem & Mol Biol, Los Angeles, CA USA
关键词
epigenetics; methylation; chromatin modifications; epigenetic therapy; cancer;
D O I
10.1111/j.1600-0463.2007.apm_636.xml.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
A cancer develops when a cell acquires specific growth advantages through the stepwise accumulation of heritable changes in gene function. Basically, this process is directed by changes in two different classes of genes: Tumor suppressor genes that inhibit cell growth and survival and oncogenes that promote cell growth and survival. Since several alterations are usually required for a cancer to fully develop, the malignant phenotype is determined by the compound status of tumor suppressor genes and oncogenes. Cancer genes may be changed by several mechanisms, which potentially alter the protein encoding nucleotide template, change the copy number of genes, or lead to increased gene transcription. Epigenetic alterations, which, by definition, comprise mitotically and meiotically heritable changes in gene expression that are not caused by changes in the primary DNA sequence, are increasingly being recognized for their roles in carcinogenesis. These epigenetic alterations may involve covalent modifications of amino acid residues in the histones around which the DNA is wrapped, and changes in the methylation status of cytosine bases (C) in the context of CpG dinucleotides within the DNA itself. Methylation of clusters of CpGs called "CpG-islands" in the promoters of genes has been associated with heritable gene silencing. The present review will focus on how disruption of the epigenome can contribute to cancer. In contrast to genetic alterations, gene silencing by epigenetic modifications is potentially reversible. Treatment by agents that inhibit cytosine methylation and histone deacetylation call initiate chromatin decondensation, demethylation and reestablishment of gene transcription. Accordingly, in the clinical setting, DNA methylation and histone modifications are very attractive targets for the development and implementation of new therapeutic approaches. Many clinical trials are ongoing, and epigenetic therapy has recently been approved by the United States Food and Drug Administration (US FDA) for use in the treatment of myelodysplastic syndrome (MDS) and primary cutaneous T-cell lymphoma (CTCL).
引用
收藏
页码:1039 / 1059
页数:21
相关论文
共 136 条
[1]  
Abe M, 2005, CANCER RES, V65, P828
[2]   Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients [J].
Aggerholm, A ;
Holm, MS ;
Guldberg, P ;
Olesen, LH ;
Hokland, P .
EUROPEAN JOURNAL OF HAEMATOLOGY, 2006, 76 (01) :23-32
[3]  
Aggerholm A, 1999, CANCER RES, V59, P436
[4]   Inactivation of the Lamin A/C gene by CpG island promoter hypermethylation in hematologic malignancies, and its association with poor survival in nodal diffuse large B-cell lymphoma [J].
Agrelo, R ;
Setien, F ;
Espada, J ;
Artiga, MJ ;
Rodriguez, M ;
Pérez-Rosado, AP ;
Sanchez-Aguilera, A ;
Fraga, MF ;
Piris, MA ;
Esteller, M .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (17) :3940-3947
[5]  
An CH, 2005, CLIN CANCER RES, V11, P656
[6]   Association of GSTP1 CpG islands hypermethylation with poor prognosis in human breast cancers [J].
Arai, Takashi ;
Miyoshi, Yasuo ;
Kim, Seung Jin ;
Taguchi, Tetsuya ;
Tamaki, Yasuhiro ;
Noguchi, Shinzaburo .
BREAST CANCER RESEARCH AND TREATMENT, 2006, 100 (02) :169-176
[7]   Science & society - Cancer and ageing: a nexus at several levels [J].
Balducci, L ;
Ershler, WB .
NATURE REVIEWS CANCER, 2005, 5 (08) :655-662
[8]   Reversing histone methylation [J].
Bannister, AJ ;
Kouzarides, T .
NATURE, 2005, 436 (7054) :1103-1106
[9]   Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci [J].
Bastian, PJ ;
Ellinger, J ;
Wellmann, A ;
Wernert, N ;
Heukamp, LC ;
Müller, SC ;
von Ruecker, A .
CLINICAL CANCER RESEARCH, 2005, 11 (11) :4097-4106
[10]   Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? [J].
Baylin, SB ;
Ohm, JE .
NATURE REVIEWS CANCER, 2006, 6 (02) :107-116