The coding of uniform colour figures in monkey visual cortex

被引:161
作者
Friedman, HS
Zhou, H
von der Heydt, R
机构
[1] Johns Hopkins Univ, Krieger Mind Brain Inst, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Neurosci, Baltimore, MD 21218 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2003年 / 548卷 / 02期
关键词
D O I
10.1113/jphysiol.2002.033555
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Psychophysical studies indicate that perception of the colour and brightness of a surface depends on neural signals evoked by the borders of the surface rather than its interior. The visual cortex emphasizes contrast borders, but it is unclear whether colour surface signals also exist, whether colour border signals are orientation selective or mainly non-oriented, and whether cortical processing tends to separate colour and form information. To address these questions we examined the representation of uniform colour figures by recording single neuron activity from areas V1 and V2 in alert macaque monkeys during behaviourally induced fixation. Three aspects of coding were quantified: colour, orientation and edge selectivity. The occurrence of colour selectivity was not correlated with orientation or edge selectivity. The fraction of colour-selective cells was the same (64% in layers 2 and 3 of V1, 45% in V2) for oriented and non-oriented cells, and for edge-selective and surface-responsive cells. Oriented cells were often highly selective in colour space, and about 40% of them were selective for edge polarity or border ownership. Thus, contrary to the idea of feature maps, colour, orientation and edge polarity are multiplexed in cortical signals. The results from V2 were similar to those from upper-layer V1, indicating that cortical processing does not strive to separate form and colour information. Oriented cells were five times more frequent than non-oriented cells. Thus, the vast majority of colour-coded cells are orientation tuned. Based on response profiles across a 4 deg square figure, and the relative frequency of oriented and non-oriented cells, we estimate that the cortical colour signal is 5-6 times stronger for the edges than for the surface of the figure. The frequency of oriented colour cells and their ability to code edge polarity indicate that these cells play a major role in the representation of surface colour.
引用
收藏
页码:593 / 613
页数:21
相关论文
共 61 条
[1]   LOCATING BASIC COLORS IN THE OSA SPACE [J].
BOYNTON, RM ;
OLSON, CX .
COLOR RESEARCH AND APPLICATION, 1987, 12 (02) :94-105
[2]   SALIENCE OF CHROMATIC BASIC COLOR TERMS CONFIRMED BY 3 MEASURES [J].
BOYNTON, RM ;
OLSON, CX .
VISION RESEARCH, 1990, 30 (09) :1311-1317
[3]  
BURKHALTER A, 1986, J NEUROSCI, V6, P2327
[4]   NEURAL DYNAMICS OF BRIGHTNESS PERCEPTION - FEATURES, BOUNDARIES, DIFFUSION, AND RESONANCE [J].
COHEN, MA ;
GROSSBERG, S .
PERCEPTION & PSYCHOPHYSICS, 1984, 36 (05) :428-456
[5]   Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1) [J].
Conway, BR .
JOURNAL OF NEUROSCIENCE, 2001, 21 (08) :2768-2783
[6]   Temporal dynamics of chromatic tuning in macaque primary visual cortex [J].
Cottaris, NP ;
De Valois, RL .
NATURE, 1998, 395 (6705) :896-900
[7]   CHROMATIC MECHANISMS IN LATERAL GENICULATE-NUCLEUS OF MACAQUE [J].
DERRINGTON, AM ;
KRAUSKOPF, J ;
LENNIE, P .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 357 (DEC) :241-265
[8]   CONTOUR, COLOR AND SHAPE-ANALYSIS BEYOND THE STRIATE CORTEX [J].
DESIMONE, R ;
SCHEIN, SJ ;
MORAN, J ;
UNGERLEIDER, LG .
VISION RESEARCH, 1985, 25 (03) :441-452
[10]  
DEVALOIS RL, 1977, SENS PROCESS, V1, P244